Skip to main content

Matrix Lie groups in Jax

Project description

jaxlie

build mypy lint codecov

[ API reference ] [ PyPI ]

jaxlie is a Lie theory library for rigid body transformations and optimization in JAX.

Implements Lie groups as high-level (data)classes:

Group Description Parameterization
jaxlie.SO2 Rotations in 2D. (real, imaginary): unit complex (∈ S2)
jaxlie.SE2 Proper rigid transforms in 2D. (real, imaginary, x, y): unit complex & translation
jaxlie.SO3 Rotations in 3D. (qw, qx, qy, qz): wxyz quaternion (∈ S4)
jaxlie.SE3 Proper rigid transforms in 3D. (qw, qx, qy, qz, x, y, z): wxyz quaternion & translation

Each group supports:

  • exp(), log(), adjoint(), multiply(), inverse(), and identity() operations
  • Helpers + analytical Jacobians for on-manifold optimization (jaxlie.manifold)
  • (Un)flattening as pytree nodes
  • Serialization using flax

Heavily inspired by (and some operations ported from) the C++ library Sophus.


Install (Python >=3.6)
pip install jaxlie

Example usage for SE(3)
import numpy as onp

from jaxlie import SE3

#############################
# (1) Constructing transforms
#############################

# We can compute a w<-b transform by integrating over an se(3) screw, equivalent
# to `SE3.from_matrix(expm(wedge(twist)))`
twist = onp.array([1.0, 0.0, 0.2, 0.0, 0.5, 0.0])
T_w_b = SE3.exp(twist)

# We can print the (quaternion) rotation term; this is an `SO3` object:
print(T_w_b.rotation())

# Or print the translation; this is a simple array with shape (3,):
print(T_w_b.translation())

# Or the underlying parameters; this is a length-7 (quaternion, translation) array:
print(T_w_b.wxyz_xyz)  # SE3-specific field
print(T_w_b.parameters())  # Helper shared by all groups

# There are also other helpers to generate transforms, eg from matrices:
T_w_b = SE3.from_matrix(T_w_b.as_matrix())

# Or from explicit rotation and translation terms:
T_w_b = SE3.from_rotation_and_translation(
    rotation=T_w_b.rotation(),
    translation=T_w_b.translation(),
)

# Or with the dataclass constructor + the underlying length-7 parameterization:
T_w_b = SE3(wxyz_xyz=T_w_b.wxyz_xyz)


#############################
# (2) Applying transforms
#############################

# Transform points with the `@` operator:
p_b = onp.random.randn(3)
p_w = T_w_b @ p_b
print(p_w)

# or `.apply()`:
p_w = T_w_b.apply(p_b)
print(p_w)

# or the homogeneous matrix form:
p_w = (T_w_b.as_matrix() @ onp.append(p_b, 1.0))[:-1]
print(p_w)


#############################
# (3) Composing transforms
#############################

# Compose transforms with the `@` operator:
T_b_a = SE3.identity()
T_w_a = T_w_b @ T_b_a
print(T_w_a)

# or `.multiply()`:
T_w_a = T_w_b.multiply(T_b_a)
print(T_w_a)


#############################
# (4) Misc
#############################

# Compute inverses:
T_b_w = T_w_b.inverse()
identity = T_w_b @ T_b_w
print(identity)

# Compute adjoints:
adjoint_T_w_b = T_w_b.adjoint()
print(adjoint_T_w_b)

# Recover our twist, equivalent to `vee(logm(T_w_b.as_matrix()))`:
twist = T_w_b.log()
print(twist)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

jaxlie-1.2.1.tar.gz (14.1 kB view details)

Uploaded Source

Built Distribution

jaxlie-1.2.1-py3-none-any.whl (16.4 kB view details)

Uploaded Python 3

File details

Details for the file jaxlie-1.2.1.tar.gz.

File metadata

  • Download URL: jaxlie-1.2.1.tar.gz
  • Upload date:
  • Size: 14.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for jaxlie-1.2.1.tar.gz
Algorithm Hash digest
SHA256 ad3f9cc0898c3c9f82e0eb3d91cadb43661a9015ee268737d2ea818ba79af58c
MD5 1400246b138c420cedd14424bfad43c5
BLAKE2b-256 b647da5d048bbe576621c6e0a1daaaa57b805b160bad9a6d6dde0e77caa0c7cb

See more details on using hashes here.

File details

Details for the file jaxlie-1.2.1-py3-none-any.whl.

File metadata

  • Download URL: jaxlie-1.2.1-py3-none-any.whl
  • Upload date:
  • Size: 16.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for jaxlie-1.2.1-py3-none-any.whl
Algorithm Hash digest
SHA256 03e5da597f7eaed47e8cddc8b476a6d38cca1c431cd99831e762abb6ff8e3986
MD5 f281d4fb5d5f6d553b2db3799a6ab993
BLAKE2b-256 222500d4a15e769017204589527ec5041236a1355740d07c2c3329132ce8b4dd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page