Skip to main content

Matrix Lie groups in Jax

Project description

jaxlie

build mypy lint codecov

[ API reference ] [ PyPI ]

jaxlie is a library containing implementations of Lie groups commonly used for rigid body transformations, targeted at computer vision & robotics applications written in JAX. Heavily inspired by the C++ library Sophus.

We implement Lie groups as high-level (data)classes:

Group Description Parameterization
jaxlie.SO2 Rotations in 2D. (real, imaginary): unit complex (∈ S2)
jaxlie.SE2 Proper rigid transforms in 2D. (real, imaginary, x, y): unit complex & translation
jaxlie.SO3 Rotations in 3D. (qw, qx, qy, qz): wxyz quaternion (∈ S4)
jaxlie.SE3 Proper rigid transforms in 3D. (qw, qx, qy, qz, x, y, z): wxyz quaternion & translation

Where each group supports:

  • Forward- and reverse-mode AD-friendly exp(), log(), adjoint(), apply(), multiply(), inverse(), identity(), from_matrix(), and as_matrix() operations.
  • Helpers + analytical Jacobians for manifold optimization (jaxlie.manifold).
  • (Un)flattening as pytree nodes.
  • Serialization using flax.
  • Compatibility with standard JAX function transformations. (we've included some examples for use with jax.vmap)

We also implement various common utilities for things like uniform random sampling (sample_uniform()) and converting from/to Euler angles (in the SO3 class).


Install (Python >=3.7)

# Python 3.6 releases also exist, but are no longer being updated.
pip install jaxlie

Example usage for SE(3)

import numpy as onp

from jaxlie import SE3

#############################
# (1) Constructing transforms.
#############################

# We can compute a w<-b transform by integrating over an se(3) screw, equivalent
# to `SE3.from_matrix(expm(wedge(twist)))`.
twist = onp.array([1.0, 0.0, 0.2, 0.0, 0.5, 0.0])
T_w_b = SE3.exp(twist)

# We can print the (quaternion) rotation term; this is an `SO3` object:
print(T_w_b.rotation())

# Or print the translation; this is a simple array with shape (3,):
print(T_w_b.translation())

# Or the underlying parameters; this is a length-7 (quaternion, translation) array:
print(T_w_b.wxyz_xyz)  # SE3-specific field.
print(T_w_b.parameters())  # Helper shared by all groups.

# There are also other helpers to generate transforms, eg from matrices:
T_w_b = SE3.from_matrix(T_w_b.as_matrix())

# Or from explicit rotation and translation terms:
T_w_b = SE3.from_rotation_and_translation(
    rotation=T_w_b.rotation(),
    translation=T_w_b.translation(),
)

# Or with the dataclass constructor + the underlying length-7 parameterization:
T_w_b = SE3(wxyz_xyz=T_w_b.wxyz_xyz)


#############################
# (2) Applying transforms.
#############################

# Transform points with the `@` operator:
p_b = onp.random.randn(3)
p_w = T_w_b @ p_b
print(p_w)

# or `.apply()`:
p_w = T_w_b.apply(p_b)
print(p_w)

# or the homogeneous matrix form:
p_w = (T_w_b.as_matrix() @ onp.append(p_b, 1.0))[:-1]
print(p_w)


#############################
# (3) Composing transforms.
#############################

# Compose transforms with the `@` operator:
T_b_a = SE3.identity()
T_w_a = T_w_b @ T_b_a
print(T_w_a)

# or `.multiply()`:
T_w_a = T_w_b.multiply(T_b_a)
print(T_w_a)


#############################
# (4) Misc.
#############################

# Compute inverses:
T_b_w = T_w_b.inverse()
identity = T_w_b @ T_b_w
print(identity)

# Compute adjoints:
adjoint_T_w_b = T_w_b.adjoint()
print(adjoint_T_w_b)

# Recover our twist, equivalent to `vee(logm(T_w_b.as_matrix()))`:
twist_recovered = T_w_b.log()
print(twist_recovered)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

jaxlie-1.2.9.tar.gz (14.8 kB view details)

Uploaded Source

Built Distribution

jaxlie-1.2.9-py3-none-any.whl (17.9 kB view details)

Uploaded Python 3

File details

Details for the file jaxlie-1.2.9.tar.gz.

File metadata

  • Download URL: jaxlie-1.2.9.tar.gz
  • Upload date:
  • Size: 14.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.1

File hashes

Hashes for jaxlie-1.2.9.tar.gz
Algorithm Hash digest
SHA256 b3396d2115cd5e043af871e791100c1674868a5c8549415357bb934e08f43a6f
MD5 ef1d660fa59ecfafaf79d5117427ff4e
BLAKE2b-256 7fe6629e761f4201cb483a9d818f5b2b7a12c107c45265ac8aec0c9a171fdafc

See more details on using hashes here.

File details

Details for the file jaxlie-1.2.9-py3-none-any.whl.

File metadata

  • Download URL: jaxlie-1.2.9-py3-none-any.whl
  • Upload date:
  • Size: 17.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.1

File hashes

Hashes for jaxlie-1.2.9-py3-none-any.whl
Algorithm Hash digest
SHA256 5424cd20ab61cd8f8cc885d10981e6d22e9b256354d693191b97021b61af5401
MD5 f38048b451c589b3beeb668ca6849249
BLAKE2b-256 a031f2aef7d3e35f62e820ad9ecfd7574583662aae8a1ce5da9a5cc89a58c349

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page