Skip to main content

Matrix Lie groups in Jax

Project description

jaxlie

build mypy lint codecov

[ API reference ] [ PyPI ]

jaxlie is a library containing implementations of Lie groups commonly used for rigid body transformations, targeted at computer vision & robotics applications written in JAX. Heavily inspired by the C++ library Sophus.

We implement Lie groups as high-level (data)classes:

Group Description Parameterization
jaxlie.SO2 Rotations in 2D. (real, imaginary): unit complex (∈ S1)
jaxlie.SE2 Proper rigid transforms in 2D. (real, imaginary, x, y): unit complex & translation
jaxlie.SO3 Rotations in 3D. (qw, qx, qy, qz): wxyz quaternion (∈ S3)
jaxlie.SE3 Proper rigid transforms in 3D. (qw, qx, qy, qz, x, y, z): wxyz quaternion & translation

Where each group supports:

  • Forward- and reverse-mode AD-friendly exp(), log(), adjoint(), apply(), multiply(), inverse(), identity(), from_matrix(), and as_matrix() operations. (see ./examples/se3_example.py)
  • Helpers for optimization on manifolds (see ./examples/se3_optimization.py, jaxlie.manifold.*).
  • Compatibility with standard JAX function transformations. (see ./examples/vmap_example.py)
  • (Un)flattening as pytree nodes.
  • Serialization using flax.

We also implement various common utilities for things like uniform random sampling (sample_uniform()) and converting from/to Euler angles (in the SO3 class).


Install (Python >=3.7)

# Python 3.6 releases also exist, but are no longer being updated.
pip install jaxlie

Example usage for SE(3)

import numpy as onp

from jaxlie import SE3

#############################
# (1) Constructing transforms.
#############################

# We can compute a w<-b transform by integrating over an se(3) screw, equivalent
# to `SE3.from_matrix(expm(wedge(twist)))`.
twist = onp.array([1.0, 0.0, 0.2, 0.0, 0.5, 0.0])
T_w_b = SE3.exp(twist)

# We can print the (quaternion) rotation term; this is an `SO3` object:
print(T_w_b.rotation())

# Or print the translation; this is a simple array with shape (3,):
print(T_w_b.translation())

# Or the underlying parameters; this is a length-7 (quaternion, translation) array:
print(T_w_b.wxyz_xyz)  # SE3-specific field.
print(T_w_b.parameters())  # Helper shared by all groups.

# There are also other helpers to generate transforms, eg from matrices:
T_w_b = SE3.from_matrix(T_w_b.as_matrix())

# Or from explicit rotation and translation terms:
T_w_b = SE3.from_rotation_and_translation(
    rotation=T_w_b.rotation(),
    translation=T_w_b.translation(),
)

# Or with the dataclass constructor + the underlying length-7 parameterization:
T_w_b = SE3(wxyz_xyz=T_w_b.wxyz_xyz)


#############################
# (2) Applying transforms.
#############################

# Transform points with the `@` operator:
p_b = onp.random.randn(3)
p_w = T_w_b @ p_b
print(p_w)

# or `.apply()`:
p_w = T_w_b.apply(p_b)
print(p_w)

# or the homogeneous matrix form:
p_w = (T_w_b.as_matrix() @ onp.append(p_b, 1.0))[:-1]
print(p_w)


#############################
# (3) Composing transforms.
#############################

# Compose transforms with the `@` operator:
T_b_a = SE3.identity()
T_w_a = T_w_b @ T_b_a
print(T_w_a)

# or `.multiply()`:
T_w_a = T_w_b.multiply(T_b_a)
print(T_w_a)


#############################
# (4) Misc.
#############################

# Compute inverses:
T_b_w = T_w_b.inverse()
identity = T_w_b @ T_b_w
print(identity)

# Compute adjoints:
adjoint_T_w_b = T_w_b.adjoint()
print(adjoint_T_w_b)

# Recover our twist, equivalent to `vee(logm(T_w_b.as_matrix()))`:
twist_recovered = T_w_b.log()
print(twist_recovered)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

jaxlie-1.3.0.tar.gz (17.6 kB view details)

Uploaded Source

Built Distribution

jaxlie-1.3.0-py3-none-any.whl (21.3 kB view details)

Uploaded Python 3

File details

Details for the file jaxlie-1.3.0.tar.gz.

File metadata

  • Download URL: jaxlie-1.3.0.tar.gz
  • Upload date:
  • Size: 17.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.6

File hashes

Hashes for jaxlie-1.3.0.tar.gz
Algorithm Hash digest
SHA256 fa9a593aeb7ceba02bdf1710bc24e67708f6e279db0f09a51cc3acf1031d5ef4
MD5 b3013898dc9a5b237002f0f196b8db0b
BLAKE2b-256 ff73987483eee32d57dfe8665c970eec4c0cf3ef07762b6b3bc0e27088c8bd90

See more details on using hashes here.

File details

Details for the file jaxlie-1.3.0-py3-none-any.whl.

File metadata

  • Download URL: jaxlie-1.3.0-py3-none-any.whl
  • Upload date:
  • Size: 21.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.6

File hashes

Hashes for jaxlie-1.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 ba2c4425346ff6fa370a79127647d3615390b350d72a6eea615b8c87a6203499
MD5 39aa2c3d18d8b091d27e36efe7a7bbd7
BLAKE2b-256 d00f2dc2842be97fef6b9dcb5bafce04fe51224d5b0f0f7409575780d1641d34

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page