jaxquantum
Project description
S. R. Jha, S. Chowdhury, M. Hays, J. A. Grover, W. D. Oliver
*Docs: https://equs.github.io/jaxquantum
jaxquantum
leverages JAX to enable the auto differentiable and (CPU, GPU, TPU) accelerated simulation of quantum dynamical systems, including tooling such as operator construction, unitary evolution and master equation solving. As such, jaxquantum
serves as a QuTiP drop-in replacement written entirely in JAX.
This package also serves as an essential dependency for bosonic
and qcsys
. Together, these packages form an end-to-end toolkit for quantum circuit design, simulation and control.
Installation
jaxquantum
is published on PyPI. So, to install the latest version from PyPI, simply run the following code to install the package:
pip install jaxquantum
For more details, please visit the getting started > installation section of our docs.
An Example
Here's an example of how to set up a simulation in jaxquantum.
from jax import jit
import jaxquantum as jqt
import jax.numpy as jnp
import matplotlib.pyplot as plt
omega_q = 5.0 #GHz
Omega = .1
g_state = jqt.basis(2,0) ^ jqt.basis(2,0)
g_state_dm = g_state.to_dm()
ts = jnp.linspace(0,5*jnp.pi/Omega,101)
c_ops = [0.1*jqt.sigmam()^jqt.identity(N=2)]
sz0 = jqt.sigmaz() ^ jqt.identity(N=2)
@jit
def Ht(t):
H0 = omega_q/2.0*((jqt.sigmaz()^jqt.identity(N=2)) + (jqt.identity(N=2)^jqt.sigmaz()))
H1 = Omega*jnp.cos((omega_q)*t)*((jqt.sigmax()^jqt.identity(N=2)) + (jqt.identity(N=2)^jqt.sigmax()))
return H0 + H1
states = jqt.mesolve(g_state_dm, ts, c_ops=c_ops, Ht=Ht)
szt = jnp.real(jqt.calc_expect(sz0, states))
fig, ax = plt.subplots(1, dpi=200, figsize=(4,3))
ax.plot(ts, szt)
ax.set_xlabel("Time (ns)")
ax.set_ylabel("<σz(t)>")
fig.tight_layout()
Acknowledgements & History
Core Devs: Shantanu A. Jha, Shoumik Chowdhury
This package was initially a small part of bosonic
. In early 2022, jaxquantum
was extracted and made into its own package. This package was briefly announced to the world at APS March Meeting 2023 and released to a select few academic groups shortly after. Since then, this package has been open sourced and developed while conducting research in the Engineering Quantum Systems Group at MIT with invaluable advice from Prof. William D. Oliver.
Citation
Thank you for taking the time to try our package out. If you found it useful in your research, please cite us as follows:
@software{jha2024jaxquantum,
author = {Shantanu R. Jha and Shoumik Chowdhury and Max Hays and Jeff A. Grover and William D. Oliver},
title = {An auto differentiable and hardware accelerated software toolkit for quantum circuit design, simulation and control},
url = {https://github.com/EQuS/jaxquantum, https://github.com/EQuS/bosonic, https://github.com/EQuS/qcsys},
version = {0.1.0},
year = {2024},
}
S. R. Jha, S. Chowdhury, M. Hays, J. A. Grover, W. D. Oliver. An auto differentiable and hardware accelerated software toolkit for quantum circuit design, simulation and control (2024), in preparation.
Contributions & Contact
This package is open source and, as such, very open to contributions. Please don't hesitate to open an issue, report a bug, request a feature, or create a pull request. We are also open to deeper collaborations to create a tool that is more useful for everyone. If a discussion would be helpful, please email shanjha@mit.edu to set up a meeting.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file jaxquantum-0.1.1.tar.gz
.
File metadata
- Download URL: jaxquantum-0.1.1.tar.gz
- Upload date:
- Size: 111.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.12.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6522711138dda1901f5ce1a531a86feae340e87c0cb86c697346894337a82448 |
|
MD5 | bde63aebe30b8a7de590915521ee050e |
|
BLAKE2b-256 | ab1d069f7c0bf23a98b44cd8f071d88d6d48dec1a072b3d146b764f345c3d7fb |