Utility functions for JaxGaussianProcesses
Project description
JaxUtils
JaxUtils
provides utility functions for the JaxGaussianProcesses
ecosystem.
Contents
PyTree
Overview
jaxutils.PyTree
is a mixin class for registering a python class as a JAX PyTree. You would define your Python class as follows.
class MyClass(jaxutils.PyTree):
...
Example
import jaxutils
from jaxtyping import Float, Array
class Line(jaxutils.PyTree):
def __init__(self, gradient: Float[Array, "1"], intercept: Float[Array, "1"]) -> None
self.gradient = gradient
self.intercept = intercept
def y(self, x: Float[Array, "N"]) -> Float[Array, "N"]
return x * self.gradient + self.intercept
Dataset
Overview
jaxutils.Dataset
is a datset abstraction. In future, we wish to extend this to a heterotopic and isotopic data abstraction.
Example
import jaxutils
import jax.numpy as jnp
# Inputs
X = jnp.array([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]])
# Outputs
y = jnp.array([[7.0], [8.0], [9.0]])
# Datset
D = jaxutils.Dataset(X=X, y=y)
print(f'The number of datapoints is {D.n}')
print(f'The input dimension is {D.in_dim}')
print(f'The output dimension is {D.out_dim}')
print(f'The input data is {D.X}')
print(f'The output data is {D.y}')
print(f'The data is supervised {D.is_supervised()}')
print(f'The data is unsupervised {D.is_unsupervised()}')
The number of datapoints is 3
The input dimension is 2
The output dimension is 1
The input data is [[1. 2.]
[3. 4.]
[5. 6.]]
The output data is [[7.]
[8.]
[9.]]
The data is supervised True
The data is unsupervised False
You can also add dataset together to concatenate them.
# New inputs
X_new = jnp.array([[1.5, 2.5], [3.5, 4.5], [5.5, 6.5]])
# New outputs
y_new = jnp.array([[7.0], [8.0], [9.0]])
# New dataset
D_new = jaxutils.Dataset(X=X_new, y=y_new)
# Concatenate the two datasets
D = D + D_new
print(f'The number of datapoints is {D.n}')
print(f'The input dimension is {D.in_dim}')
print(f'The output dimension is {D.out_dim}')
print(f'The input data is {D.X}')
print(f'The output data is {D.y}')
print(f'The data is supervised {D.is_supervised()}')
print(f'The data is unsupervised {D.is_unsupervised()}')
The number of datapoints is 6
The input dimension is 2
The output dimension is 1
The input data is [[1. 2. ]
[3. 4. ]
[5. 6. ]
[1.5 2.5]
[3.5 4.5]
[5.5 6.5]]
The output data is [[7.]
[8.]
[9.]
[7.]
[8.]
[9.]]
The data is supervised True
The data is unsupervised False
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
jaxutils-0.0.8.tar.gz
(30.0 kB
view details)
Built Distribution
jaxutils-0.0.8-py3-none-any.whl
(17.7 kB
view details)
File details
Details for the file jaxutils-0.0.8.tar.gz
.
File metadata
- Download URL: jaxutils-0.0.8.tar.gz
- Upload date:
- Size: 30.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a5c3d6d763bbb41c77b4cbfbe65ac76bdf29fd5e52eadefab7401928f4911915 |
|
MD5 | af433b546ca5098cb9a6471a9572295b |
|
BLAKE2b-256 | 5fbe279b2c47fb507d5a9d4cb43ca57cf8bff7e2217eb0ec08207f1b32e14be7 |
File details
Details for the file jaxutils-0.0.8-py3-none-any.whl
.
File metadata
- Download URL: jaxutils-0.0.8-py3-none-any.whl
- Upload date:
- Size: 17.7 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9606040a444cec6ada3befe1eaf1b2459f82568432d46fffe09eadff9b7eeeb6 |
|
MD5 | 653d6fb8c4e16118ba98ae59ea7ffc74 |
|
BLAKE2b-256 | c3e64a4d0ac0cabee87465c37d421b0c7afa394172d27e7e53c2cf9dd0263345 |