Skip to main content

Utility functions for JaxGaussianProcesses

Project description


This project has now been incorporated into GPJax.

JaxUtils

CircleCI

JaxUtils provides utility functions for the JaxGaussianProcesses ecosystem.

Contents

PyTree

Overview

jaxutils.PyTree is a mixin class for registering a python class as a JAX PyTree. You would define your Python class as follows.

class MyClass(jaxutils.PyTree):
    ...

Example

import jaxutils

from jaxtyping import Float, Array

class Line(jaxutils.PyTree):
    def __init__(self, gradient: Float[Array, "1"], intercept: Float[Array, "1"]) -> None
        self.gradient = gradient
        self.intercept = intercept

    def y(self, x: Float[Array, "N"]) -> Float[Array, "N"]
        return x * self.gradient + self.intercept

Dataset

Overview

jaxutils.Dataset is a datset abstraction. In future, we wish to extend this to a heterotopic and isotopic data abstraction.

Example

import jaxutils
import jax.numpy as jnp

# Inputs
X = jnp.array([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]])

# Outputs
y = jnp.array([[7.0], [8.0], [9.0]])

# Datset
D = jaxutils.Dataset(X=X, y=y)

print(f'The number of datapoints is {D.n}')
print(f'The input dimension is {D.in_dim}')
print(f'The output dimension is {D.out_dim}')
print(f'The input data is {D.X}')
print(f'The output data is {D.y}')
print(f'The data is supervised {D.is_supervised()}')
print(f'The data is unsupervised {D.is_unsupervised()}')
The number of datapoints is 3
The input dimension is 2
The output dimension is 1
The input data is [[1. 2.]
 [3. 4.]
 [5. 6.]]
The output data is [[7.]
 [8.]
 [9.]]
The data is supervised True
The data is unsupervised False

You can also add dataset together to concatenate them.

# New inputs
X_new = jnp.array([[1.5, 2.5], [3.5, 4.5], [5.5, 6.5]])

# New outputs
y_new = jnp.array([[7.0], [8.0], [9.0]])

# New dataset
D_new = jaxutils.Dataset(X=X_new, y=y_new)

# Concatenate the two datasets
D = D + D_new

print(f'The number of datapoints is {D.n}')
print(f'The input dimension is {D.in_dim}')
print(f'The output dimension is {D.out_dim}')
print(f'The input data is {D.X}')
print(f'The output data is {D.y}')
print(f'The data is supervised {D.is_supervised()}')
print(f'The data is unsupervised {D.is_unsupervised()}')
The number of datapoints is 6
The input dimension is 2
The output dimension is 1
The input data is [[1.  2. ]
 [3.  4. ]
 [5.  6. ]
 [1.5 2.5]
 [3.5 4.5]
 [5.5 6.5]]
The output data is [[7.]
 [8.]
 [9.]
 [7.]
 [8.]
 [9.]]
The data is supervised True
The data is unsupervised False

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

jaxutils-nightly-0.0.8.dev20230531.tar.gz (30.2 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file jaxutils-nightly-0.0.8.dev20230531.tar.gz.

File metadata

File hashes

Hashes for jaxutils-nightly-0.0.8.dev20230531.tar.gz
Algorithm Hash digest
SHA256 172b8a30990c899ac9fee96700b8dfd36d57c59821db1c8f93500f765b4c1333
MD5 0139690fe7c367865aa486ce80d949b5
BLAKE2b-256 839f18903bd26fec1d85afac283c36a4667d979ffa714a29ac675e842708dacc

See more details on using hashes here.

File details

Details for the file jaxutils_nightly-0.0.8.dev20230531-py3-none-any.whl.

File metadata

File hashes

Hashes for jaxutils_nightly-0.0.8.dev20230531-py3-none-any.whl
Algorithm Hash digest
SHA256 c114768e0560ccc5c66ba615387935ed772b88b880fd7c48d3d0829bdf2c8747
MD5 59977bb94efcc0b63919ee7d89b79a74
BLAKE2b-256 091859ac45a0a3331419ef2560919cb10a529f6a1d658603b44dadb671c86a93

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page