Skip to main content

Utility functions for JaxGaussianProcesses

Project description


This project has now been incorporated into GPJax.

JaxUtils

CircleCI

JaxUtils provides utility functions for the JaxGaussianProcesses ecosystem.

Contents

PyTree

Overview

jaxutils.PyTree is a mixin class for registering a python class as a JAX PyTree. You would define your Python class as follows.

class MyClass(jaxutils.PyTree):
    ...

Example

import jaxutils

from jaxtyping import Float, Array

class Line(jaxutils.PyTree):
    def __init__(self, gradient: Float[Array, "1"], intercept: Float[Array, "1"]) -> None
        self.gradient = gradient
        self.intercept = intercept

    def y(self, x: Float[Array, "N"]) -> Float[Array, "N"]
        return x * self.gradient + self.intercept

Dataset

Overview

jaxutils.Dataset is a datset abstraction. In future, we wish to extend this to a heterotopic and isotopic data abstraction.

Example

import jaxutils
import jax.numpy as jnp

# Inputs
X = jnp.array([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]])

# Outputs
y = jnp.array([[7.0], [8.0], [9.0]])

# Datset
D = jaxutils.Dataset(X=X, y=y)

print(f'The number of datapoints is {D.n}')
print(f'The input dimension is {D.in_dim}')
print(f'The output dimension is {D.out_dim}')
print(f'The input data is {D.X}')
print(f'The output data is {D.y}')
print(f'The data is supervised {D.is_supervised()}')
print(f'The data is unsupervised {D.is_unsupervised()}')
The number of datapoints is 3
The input dimension is 2
The output dimension is 1
The input data is [[1. 2.]
 [3. 4.]
 [5. 6.]]
The output data is [[7.]
 [8.]
 [9.]]
The data is supervised True
The data is unsupervised False

You can also add dataset together to concatenate them.

# New inputs
X_new = jnp.array([[1.5, 2.5], [3.5, 4.5], [5.5, 6.5]])

# New outputs
y_new = jnp.array([[7.0], [8.0], [9.0]])

# New dataset
D_new = jaxutils.Dataset(X=X_new, y=y_new)

# Concatenate the two datasets
D = D + D_new

print(f'The number of datapoints is {D.n}')
print(f'The input dimension is {D.in_dim}')
print(f'The output dimension is {D.out_dim}')
print(f'The input data is {D.X}')
print(f'The output data is {D.y}')
print(f'The data is supervised {D.is_supervised()}')
print(f'The data is unsupervised {D.is_unsupervised()}')
The number of datapoints is 6
The input dimension is 2
The output dimension is 1
The input data is [[1.  2. ]
 [3.  4. ]
 [5.  6. ]
 [1.5 2.5]
 [3.5 4.5]
 [5.5 6.5]]
The output data is [[7.]
 [8.]
 [9.]
 [7.]
 [8.]
 [9.]]
The data is supervised True
The data is unsupervised False

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

jaxutils-nightly-0.0.8.dev20240114.tar.gz (30.2 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file jaxutils-nightly-0.0.8.dev20240114.tar.gz.

File metadata

File hashes

Hashes for jaxutils-nightly-0.0.8.dev20240114.tar.gz
Algorithm Hash digest
SHA256 8cba1073559c17cac705700d5290e1e035b69084ca619462c3621233131902e3
MD5 720073f06876c40fb3366364c776908f
BLAKE2b-256 41c7c1487035abd42322298794af3b8f930765d38ca115eff0fd81c62c95f030

See more details on using hashes here.

File details

Details for the file jaxutils_nightly-0.0.8.dev20240114-py3-none-any.whl.

File metadata

File hashes

Hashes for jaxutils_nightly-0.0.8.dev20240114-py3-none-any.whl
Algorithm Hash digest
SHA256 879d3d4850241df92ad69d5d23859ecaaa76dd26a5c58abc2be8cf7e68a4baba
MD5 56508edb1c5c11bbc56defa19dbe3555
BLAKE2b-256 1054a54d1a4f7b15c4c4431d121ca711576c10cdbfc1e4046c1704bcae837b97

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page