Skip to main content

Utility functions for JaxGaussianProcesses

Project description


This project has now been incorporated into GPJax.

JaxUtils

CircleCI

JaxUtils provides utility functions for the JaxGaussianProcesses ecosystem.

Contents

PyTree

Overview

jaxutils.PyTree is a mixin class for registering a python class as a JAX PyTree. You would define your Python class as follows.

class MyClass(jaxutils.PyTree):
    ...

Example

import jaxutils

from jaxtyping import Float, Array

class Line(jaxutils.PyTree):
    def __init__(self, gradient: Float[Array, "1"], intercept: Float[Array, "1"]) -> None
        self.gradient = gradient
        self.intercept = intercept

    def y(self, x: Float[Array, "N"]) -> Float[Array, "N"]
        return x * self.gradient + self.intercept

Dataset

Overview

jaxutils.Dataset is a datset abstraction. In future, we wish to extend this to a heterotopic and isotopic data abstraction.

Example

import jaxutils
import jax.numpy as jnp

# Inputs
X = jnp.array([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]])

# Outputs
y = jnp.array([[7.0], [8.0], [9.0]])

# Datset
D = jaxutils.Dataset(X=X, y=y)

print(f'The number of datapoints is {D.n}')
print(f'The input dimension is {D.in_dim}')
print(f'The output dimension is {D.out_dim}')
print(f'The input data is {D.X}')
print(f'The output data is {D.y}')
print(f'The data is supervised {D.is_supervised()}')
print(f'The data is unsupervised {D.is_unsupervised()}')
The number of datapoints is 3
The input dimension is 2
The output dimension is 1
The input data is [[1. 2.]
 [3. 4.]
 [5. 6.]]
The output data is [[7.]
 [8.]
 [9.]]
The data is supervised True
The data is unsupervised False

You can also add dataset together to concatenate them.

# New inputs
X_new = jnp.array([[1.5, 2.5], [3.5, 4.5], [5.5, 6.5]])

# New outputs
y_new = jnp.array([[7.0], [8.0], [9.0]])

# New dataset
D_new = jaxutils.Dataset(X=X_new, y=y_new)

# Concatenate the two datasets
D = D + D_new

print(f'The number of datapoints is {D.n}')
print(f'The input dimension is {D.in_dim}')
print(f'The output dimension is {D.out_dim}')
print(f'The input data is {D.X}')
print(f'The output data is {D.y}')
print(f'The data is supervised {D.is_supervised()}')
print(f'The data is unsupervised {D.is_unsupervised()}')
The number of datapoints is 6
The input dimension is 2
The output dimension is 1
The input data is [[1.  2. ]
 [3.  4. ]
 [5.  6. ]
 [1.5 2.5]
 [3.5 4.5]
 [5.5 6.5]]
The output data is [[7.]
 [8.]
 [9.]
 [7.]
 [8.]
 [9.]]
The data is supervised True
The data is unsupervised False

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

jaxutils-nightly-0.0.8.dev20240430.tar.gz (30.2 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file jaxutils-nightly-0.0.8.dev20240430.tar.gz.

File metadata

File hashes

Hashes for jaxutils-nightly-0.0.8.dev20240430.tar.gz
Algorithm Hash digest
SHA256 c0f3563228605085cc8614da3eb67afd57643e091a2edce0a1c0560f0b1a939b
MD5 ec1d248602f6b8ce5f67ff2b09dc2e85
BLAKE2b-256 7ba3bb73658ea2c2e884798c88c3d8865bc02ec66a0604fceadbbd203427a5bd

See more details on using hashes here.

File details

Details for the file jaxutils_nightly-0.0.8.dev20240430-py3-none-any.whl.

File metadata

File hashes

Hashes for jaxutils_nightly-0.0.8.dev20240430-py3-none-any.whl
Algorithm Hash digest
SHA256 83a554a0820193b28e297d0b5807a7df5e9f3b3c2f8eae363e9a2b0a5b5f9fe3
MD5 ae0333e665df724f0073465390f07c89
BLAKE2b-256 f2cc724a5be91085f783a2e3d4b0b5c56d98e3dec146510ed4aec7ff9dcae30a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page