Skip to main content

Utility functions for JaxGaussianProcesses

Project description


This project has now been incorporated into GPJax.

JaxUtils

CircleCI

JaxUtils provides utility functions for the JaxGaussianProcesses ecosystem.

Contents

PyTree

Overview

jaxutils.PyTree is a mixin class for registering a python class as a JAX PyTree. You would define your Python class as follows.

class MyClass(jaxutils.PyTree):
    ...

Example

import jaxutils

from jaxtyping import Float, Array

class Line(jaxutils.PyTree):
    def __init__(self, gradient: Float[Array, "1"], intercept: Float[Array, "1"]) -> None
        self.gradient = gradient
        self.intercept = intercept

    def y(self, x: Float[Array, "N"]) -> Float[Array, "N"]
        return x * self.gradient + self.intercept

Dataset

Overview

jaxutils.Dataset is a datset abstraction. In future, we wish to extend this to a heterotopic and isotopic data abstraction.

Example

import jaxutils
import jax.numpy as jnp

# Inputs
X = jnp.array([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]])

# Outputs
y = jnp.array([[7.0], [8.0], [9.0]])

# Datset
D = jaxutils.Dataset(X=X, y=y)

print(f'The number of datapoints is {D.n}')
print(f'The input dimension is {D.in_dim}')
print(f'The output dimension is {D.out_dim}')
print(f'The input data is {D.X}')
print(f'The output data is {D.y}')
print(f'The data is supervised {D.is_supervised()}')
print(f'The data is unsupervised {D.is_unsupervised()}')
The number of datapoints is 3
The input dimension is 2
The output dimension is 1
The input data is [[1. 2.]
 [3. 4.]
 [5. 6.]]
The output data is [[7.]
 [8.]
 [9.]]
The data is supervised True
The data is unsupervised False

You can also add dataset together to concatenate them.

# New inputs
X_new = jnp.array([[1.5, 2.5], [3.5, 4.5], [5.5, 6.5]])

# New outputs
y_new = jnp.array([[7.0], [8.0], [9.0]])

# New dataset
D_new = jaxutils.Dataset(X=X_new, y=y_new)

# Concatenate the two datasets
D = D + D_new

print(f'The number of datapoints is {D.n}')
print(f'The input dimension is {D.in_dim}')
print(f'The output dimension is {D.out_dim}')
print(f'The input data is {D.X}')
print(f'The output data is {D.y}')
print(f'The data is supervised {D.is_supervised()}')
print(f'The data is unsupervised {D.is_unsupervised()}')
The number of datapoints is 6
The input dimension is 2
The output dimension is 1
The input data is [[1.  2. ]
 [3.  4. ]
 [5.  6. ]
 [1.5 2.5]
 [3.5 4.5]
 [5.5 6.5]]
The output data is [[7.]
 [8.]
 [9.]
 [7.]
 [8.]
 [9.]]
The data is supervised True
The data is unsupervised False

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

jaxutils-nightly-0.0.8.dev20240805.tar.gz (30.2 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file jaxutils-nightly-0.0.8.dev20240805.tar.gz.

File metadata

File hashes

Hashes for jaxutils-nightly-0.0.8.dev20240805.tar.gz
Algorithm Hash digest
SHA256 8ac9269b8952d2d669b0374e70f4948719ee0037620b07fd53397a51e0ff690e
MD5 1e6fb3fdf9fe505dc2ce3fa392a23e96
BLAKE2b-256 af041be9c08bdb4393f222a6b335251deb88debed2b69027e52a9d617fd88b36

See more details on using hashes here.

File details

Details for the file jaxutils_nightly-0.0.8.dev20240805-py3-none-any.whl.

File metadata

File hashes

Hashes for jaxutils_nightly-0.0.8.dev20240805-py3-none-any.whl
Algorithm Hash digest
SHA256 790811241c6bb9b354bf1479836ad348be49324bc2d9499a2ac5ec96cad1af89
MD5 96718eeef8b5ae684e5990230a98c18f
BLAKE2b-256 0da2138fbde595762fcb63395469ca8e30fa159ce101ff1f5b95e1bc033b566f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page