Skip to main content

Utility functions for JaxGaussianProcesses

Project description


This project has now been incorporated into GPJax.

JaxUtils

CircleCI

JaxUtils provides utility functions for the JaxGaussianProcesses ecosystem.

Contents

PyTree

Overview

jaxutils.PyTree is a mixin class for registering a python class as a JAX PyTree. You would define your Python class as follows.

class MyClass(jaxutils.PyTree):
    ...

Example

import jaxutils

from jaxtyping import Float, Array

class Line(jaxutils.PyTree):
    def __init__(self, gradient: Float[Array, "1"], intercept: Float[Array, "1"]) -> None
        self.gradient = gradient
        self.intercept = intercept

    def y(self, x: Float[Array, "N"]) -> Float[Array, "N"]
        return x * self.gradient + self.intercept

Dataset

Overview

jaxutils.Dataset is a datset abstraction. In future, we wish to extend this to a heterotopic and isotopic data abstraction.

Example

import jaxutils
import jax.numpy as jnp

# Inputs
X = jnp.array([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]])

# Outputs
y = jnp.array([[7.0], [8.0], [9.0]])

# Datset
D = jaxutils.Dataset(X=X, y=y)

print(f'The number of datapoints is {D.n}')
print(f'The input dimension is {D.in_dim}')
print(f'The output dimension is {D.out_dim}')
print(f'The input data is {D.X}')
print(f'The output data is {D.y}')
print(f'The data is supervised {D.is_supervised()}')
print(f'The data is unsupervised {D.is_unsupervised()}')
The number of datapoints is 3
The input dimension is 2
The output dimension is 1
The input data is [[1. 2.]
 [3. 4.]
 [5. 6.]]
The output data is [[7.]
 [8.]
 [9.]]
The data is supervised True
The data is unsupervised False

You can also add dataset together to concatenate them.

# New inputs
X_new = jnp.array([[1.5, 2.5], [3.5, 4.5], [5.5, 6.5]])

# New outputs
y_new = jnp.array([[7.0], [8.0], [9.0]])

# New dataset
D_new = jaxutils.Dataset(X=X_new, y=y_new)

# Concatenate the two datasets
D = D + D_new

print(f'The number of datapoints is {D.n}')
print(f'The input dimension is {D.in_dim}')
print(f'The output dimension is {D.out_dim}')
print(f'The input data is {D.X}')
print(f'The output data is {D.y}')
print(f'The data is supervised {D.is_supervised()}')
print(f'The data is unsupervised {D.is_unsupervised()}')
The number of datapoints is 6
The input dimension is 2
The output dimension is 1
The input data is [[1.  2. ]
 [3.  4. ]
 [5.  6. ]
 [1.5 2.5]
 [3.5 4.5]
 [5.5 6.5]]
The output data is [[7.]
 [8.]
 [9.]
 [7.]
 [8.]
 [9.]]
The data is supervised True
The data is unsupervised False

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

jaxutils-nightly-0.0.8.dev20240922.tar.gz (30.2 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file jaxutils-nightly-0.0.8.dev20240922.tar.gz.

File metadata

File hashes

Hashes for jaxutils-nightly-0.0.8.dev20240922.tar.gz
Algorithm Hash digest
SHA256 ca06970d0f47780c744c8409aaa9f0ed188048b1ccb9e34346ca16ef9d39a574
MD5 883b74fd98503574068555bb7e45fa6a
BLAKE2b-256 cb46262bc6630fade875cfbf933432c9ed07458707abbea451a53a092f219efc

See more details on using hashes here.

File details

Details for the file jaxutils_nightly-0.0.8.dev20240922-py3-none-any.whl.

File metadata

File hashes

Hashes for jaxutils_nightly-0.0.8.dev20240922-py3-none-any.whl
Algorithm Hash digest
SHA256 8fe9c8265ed5453deb7dfcef030554c00acd5e5347ad73c40ab40ff2dcdc939c
MD5 0ed569466f5a6983661315e1ef9d1355
BLAKE2b-256 f54013b8dbb69eb8fbed3f6d97aa140009a35a27fe451de5cfd54701eb650afb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page