Document Image Skew Estimation using Adaptive Radial Projection
Project description
Document Image Skew Estimation
Table of Contents
Table of contents generated with markdown-toc
Installation
pip
pip install jdeskew
How-to-use
using python
from jdeskew.estimator import get_angle
angle = get_angle(image)
from jdeskew.utility import rotate
output_image = rotate(image, angle)
Docker
https://hub.docker.com/r/phamquiluan/jdeskew/tags
# build
DOCKER_BUILDKIT=1 docker build -t jdeskew .
# run
docker run -p 8000:80 jdeskew
# test
curl -v -F file=@sample.png localhost:8000/predict
using cog
https://github.com/replicate/cog
cog build --debug
cog predict -i input=@skew.png
# Output:
# Running prediction...
# {
# "angle": -0.12520868113522532
# }
Download Paper
Link1: https://ieeexplore.ieee.org/document/9897910
Performance Comparison on DISE 2021
CE: Correct Estimation rate
WE: Worst Error
AED | TOP80 | CE | WE | |
---|---|---|---|---|
FredsDeskew | 10.82 | 0.09 | 0.54 | 109 |
PypiDeskew | 16.59 | 0.24 | 0.2 | 141 |
Koo, Hyung Il et al. | 0.22 | 0.09 | 0.48 | 9.43 |
CMC-MSU | 0.27 | 0.11 | 0.43 | 23.2 |
LRDE-EPITA-a | 0.14 | 0.06 | 0.66 | 10.61 |
Our (1024) | 0.11 | 0.07 | 0.67 | 1.13 |
Our (1500) | 0.09 | 0.05 | 0.78 | 1.13 |
Our (2048) | 0.08 | 0.04 | 0.84 | 1.13 |
Our (3072) | 0.07 | 0.04 | 0.86 | 1.13 |
Our (4096) | 0.08 | 0.04 | 0.83 | 1.18 |
DISE 2021 Dataset
This datasets are built upon three other datasets: DISEC 2013, RVL-CDIP, RDCL 2017. So I urge you to respect their LICENSE.
Dataset Name | URL |
---|---|
DISE 2021 (45 degree) | https://drive.google.com/file/d/1a-a6aOqdsghjeHGLnCLsDs7NoJIus-Pw/view?usp=sharing |
DISE 2021 (15 degree) | https://drive.google.com/file/d/1BLiuu-j28dbuPFi4n3C0KuV6vXGmB0qS/view?usp=sharing |
Can also download from Zenodo: https://zenodo.org/records/12570649
Reproducibility and Evaluation Code
Check the reproduce.ipynb file
Citation
L. Pham, H. Hoang, X.T. Mai, T. A. Tran, "Adaptive Radial Projection on Fourier Magnitude Spectrum for Document Image Skew Estimation", ICIP, 2022.
@inproceedings{pham2021dise,
title={Adaptive Radial Projection on Fourier Magnitude Spectrum for Document Image Skew Estimation},
author={Luan Pham, Hao Hoang, Toan Mai, and Tuan Anh Tran},
booktitle={2022 29th International Conference on Image Processing (ICIP)},
year={2022},
organization={IEEE}
}
Star History
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file jdeskew-0.2.3.tar.gz
.
File metadata
- Download URL: jdeskew-0.2.3.tar.gz
- Upload date:
- Size: 329.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.20
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 214afdbc894350a02a129e11026023d9e8f9291dbc5a70573e9db23e02bab584 |
|
MD5 | 04d91c07037fa298be4bdb473f5b6d77 |
|
BLAKE2b-256 | 197d4948487bc3815f09d50ae7958d0fc14dc15c18e28473134f54903321c02b |
File details
Details for the file jdeskew-0.2.3-py3-none-any.whl
.
File metadata
- Download URL: jdeskew-0.2.3-py3-none-any.whl
- Upload date:
- Size: 6.9 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.20
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | cc019f43825a8c29a07cbf486f1a5c3156ae559b1f3ac0547e469fb0074fb0e9 |
|
MD5 | 8325e10662e5a48fc603ccbc0c452917 |
|
BLAKE2b-256 | 4365658677a6c5ec3e40555c4a77e163e7f8782ba4e0107039718b81cb862350 |