Skip to main content

PyBullet models prepared for usage via the gymnasium environment

Project description

jDrones Logo codecovCDCI docstring coverage

Why

Provide a gymnasium style interface using a physics simulation engine (pybullet in this case) to drone models. This in-turn enables faster prototyping of controllers, and reinforcement models. I'm maintaining this particular repo for my own research which is focused on waypoint generation, hence my priority is the trajectory drone environment. However, any upgrades and updates on the others would be hugely appreciated.

:warning: This code is still in alpha and will change over time as I use it :warning:

Environments

The environment documentation can be found here

Base Dynamics

  1. PyBulletDroneEnv-v0 :link:
  2. NonLinearDynamicModelDroneEnv-v0 :link:
  3. LinearDynamicModelDroneEnv-v0 :link:

Attitude

  1. LQRDroneEnv-v0 :link:

Position

  1. FirstOrderPolyPositionDroneEnv-v0 :link:
  2. FifthOrderPolyPositionDroneEnv-v0 :link:
  3. FifthOrderPolyPositionWithLookAheadDroneEnv-v0 :link:

Development

Create the local development environment:

conda create --name jdrones python=3.10
conda activate jdrones
pip install -r requirements.txt -r tests/requirements.txt

The run ***all tests with

#!/bin/bash
GIT_DIR=$(git rev-parse --show-toplevel)
PYTHONPATH=$GIT_DIR/src python -m pytest -s -q -n auto $GIT_DIR
PYTHONPATH=$GIT_DIR/src python -m pytest -s -q -n auto --only-integration $GIT_DIR
PYTHONPATH=$GIT_DIR/src python -m pytest -s -q -n auto --only-slow-integration $GIT_DIR

Citations

[1] J. Panerati, H. Zheng, S. Zhou, J. Xu, A. Prorok, and A. P. Schoellig, ‘Learning to Fly -- a Gym Environment with PyBullet Physics for Reinforcement Learning of Multi-agent Quadcopter Control’. arXiv, Jul. 25, 2021. doi: 10.48550/arXiv.2103.02142.

[2] J. Meyer, A. Sendobry, S. Kohlbrecher, U. Klingauf, and O. von Stryk, ‘Comprehensive Simulation of Quadrotor UAVs Using ROS and Gazebo’, in Simulation, Modeling, and Programming for Autonomous Robots, Berlin, Heidelberg, 2012, pp. 400–411. doi: 10.1007/978-3-642-34327-8_36.

Future Work

  • Better sensor modelling and kalman filters
  • Performance improvements of simulation using either compiled code or a JIT
  • Better controllers
    • LQR
  • Better trajectory generation between waypoints
    • First- and fifth-order polynomial trajectory generation
  • Examples
  • Proper integration testing
  • Higher fidelity motor models

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

jdrones-0.8.0-py3-none-any.whl (154.6 kB view details)

Uploaded Python 3

File details

Details for the file jdrones-0.8.0-py3-none-any.whl.

File metadata

  • Download URL: jdrones-0.8.0-py3-none-any.whl
  • Upload date:
  • Size: 154.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.11.8

File hashes

Hashes for jdrones-0.8.0-py3-none-any.whl
Algorithm Hash digest
SHA256 b26a2c4b1b7ed91f608960ebbf9803a655bafe16d70379221060dbff06c5dea0
MD5 b9640ac09e3cf5260befa1bb2ca047f5
BLAKE2b-256 cd636b9535e72253a254505e984eabf8eff43a23d6c3ee8ea23f7499dd138231

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page