Skip to main content

Compute Natural Breaks (Jenks algorythm)

Project description

Compute “natural” break values (Jenks algorythm) on list/tuple/numpy.ndarray of integers/floats.

(Intented compatibility: CPython 2.7+ and 3.3+ - Wheels are provided via PyPI for windows users)

Version Build Status travis Build status appveyor

Usage :

>>> import jenkspy
>>> import random
>>> list_of_values = [random.random()*5000 for _ in range(12000)]

>>> breaks = jenkspy.jenks_breaks(list_of_values, nb_class=6)

>>> breaks
    (0.1259707312994962, 1270.571003315598, 2527.460251085392, 3763.0374498649376, 4999.87456576267)

>>> import json
>>> with open('tests/test.json', 'r') as f:
...     data = json.loads(f.read())
...
>>> jenkspy.jenks_breaks(data, nb_class=5)
(0.0028109620325267315, 2.0935479691252112, 4.205495140049607, 6.178148351609707, 8.09175917180255, 9.997982932254672)

The Installation : ————–

pip install jenkspy
git clone http://github.com/mthh/jenkspy
cd jenkspy/
python setup.py install

Requirements (only for building from source):

  • C compiler

  • Python C headers

Motivation :

  • Making a painless installing C extension so it could be used more easily as a dependency in an other package (and so learning how to build wheels using appveyor).

  • Getting the break values! (and fast!). No fancy functionnality provided, but contributions/forks/etc are welcome.

  • Other python implementations are currently existing.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

jenkspy-0.1.2.tar.gz (42.3 kB view details)

Uploaded Source

Built Distributions

jenkspy-0.1.2-cp35-cp35m-win_amd64.whl (53.2 kB view details)

Uploaded CPython 3.5m Windows x86-64

jenkspy-0.1.2-cp35-cp35m-win32.whl (51.7 kB view details)

Uploaded CPython 3.5m Windows x86

jenkspy-0.1.2-cp34-cp34m-win_amd64.whl (51.4 kB view details)

Uploaded CPython 3.4m Windows x86-64

jenkspy-0.1.2-cp27-cp27m-win_amd64.whl (51.5 kB view details)

Uploaded CPython 2.7m Windows x86-64

jenkspy-0.1.2-cp27-cp27m-win32.whl (51.0 kB view details)

Uploaded CPython 2.7m Windows x86

jenkspy-0.1.2-0-cp34-cp34m-win32.whl (51.0 kB view details)

Uploaded CPython 3.4m Windows x86

File details

Details for the file jenkspy-0.1.2.tar.gz.

File metadata

  • Download URL: jenkspy-0.1.2.tar.gz
  • Upload date:
  • Size: 42.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for jenkspy-0.1.2.tar.gz
Algorithm Hash digest
SHA256 c40bb4d9c3b20149ea4ee894e25bec9f4a01163d9d61cdb262a18379a814b52a
MD5 81cd92e38a64fe293d7629c049b40177
BLAKE2b-256 389438d795843e68e2fe479b20856627e59fb91b36e4e8fa52d81f707b450a96

See more details on using hashes here.

File details

Details for the file jenkspy-0.1.2-cp35-cp35m-win_amd64.whl.

File metadata

File hashes

Hashes for jenkspy-0.1.2-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 4ed41b493eab6c09405744cd39ba070453ce683223ac6944f5ecf752bfe12929
MD5 63576d848fd704745bc3ac2ca80f3ab0
BLAKE2b-256 f2a06799715e0d66b3d614f194cb32bad6f644a2a538bf19a9bd246f191cff5e

See more details on using hashes here.

File details

Details for the file jenkspy-0.1.2-cp35-cp35m-win32.whl.

File metadata

File hashes

Hashes for jenkspy-0.1.2-cp35-cp35m-win32.whl
Algorithm Hash digest
SHA256 8901c5d9540f519001f6c70302c94a419a06b624053de542ecac5a7b2863e374
MD5 de364f5d6d47c95ab08cc789a32ad922
BLAKE2b-256 0121669bb20f6485b1950594be448dae52f38555f8afdae329c14e8970ce37fb

See more details on using hashes here.

File details

Details for the file jenkspy-0.1.2-cp34-cp34m-win_amd64.whl.

File metadata

File hashes

Hashes for jenkspy-0.1.2-cp34-cp34m-win_amd64.whl
Algorithm Hash digest
SHA256 cf57a7bfbe34ba16bd60c772f2ad25bded3d1db52d02c4e637781b6da050e4af
MD5 2d97e7ede6ffd6a5cc259bb0e0b2c027
BLAKE2b-256 9fac6205f0b80f443a1e7b5cf5e5e833eda13b2368e6c3977a487a024257cac9

See more details on using hashes here.

File details

Details for the file jenkspy-0.1.2-cp27-cp27m-win_amd64.whl.

File metadata

File hashes

Hashes for jenkspy-0.1.2-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 66a4d5432fdac7ea006ce20fc809aa112938f8156ae853bc0a8b07ca6470c4fc
MD5 dafee07fe08defc4ea9492c42f21732d
BLAKE2b-256 9c639c0725deb54d93ea87833655114052d1a13b278fd906278f5c3e0a330df9

See more details on using hashes here.

File details

Details for the file jenkspy-0.1.2-cp27-cp27m-win32.whl.

File metadata

File hashes

Hashes for jenkspy-0.1.2-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 de563db907da5364645c82168ffdc2a77b4f54b6019d2cb7ed5793271d339858
MD5 bceda0521fdb553a1317f884e31a7e74
BLAKE2b-256 313036d6dd79992853000f2071e4c3f32ac76dc854f61bf8271050e617ce7a01

See more details on using hashes here.

File details

Details for the file jenkspy-0.1.2-0-cp34-cp34m-win32.whl.

File metadata

File hashes

Hashes for jenkspy-0.1.2-0-cp34-cp34m-win32.whl
Algorithm Hash digest
SHA256 1068f339de99f2b8cd1229fa685c3ed7946b97fbcc6542485f1eb7c4c1ffc76f
MD5 5a57cc7395b06815662f7fd89a63dd39
BLAKE2b-256 bc2a81049a42466ebc7f924d7cb0d9d8949821ca2a3c9161387b1e55e37e7afc

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page