Skip to main content

A minimum viable package for processing structured data

Project description

jertl - A minimum viable package for processing structured data

Where developers declaratively define and execute common operations on complex data structures.

Operations are specified using a mini-language in which target structures are visually similar to their textual representation.

Examples

Matching

Jertl can be used to verify the structure of data, select nested values, or both.

>>> movie = {"title": "Pinocchio", "MPAA rating": "PG"}
>>>
>>> match = jertl.match('{"title": title, "MPAA rating": "PG"}', movie)
>>>
>>> if match is not None:
...     print(match.bindings['title'])
...
Pinocchio

Filling

Jertl can also be used as a template library.

>>> jertl.fill('{"name": name, "age": age, "status": status}',
...            name="Ray",
...            age=66,
...            status='employed')
{'name': 'Ray', 'age': 66, 'status': 'employed'}

Transforming

Data transformations are defined using representations of the source and target data.

>>> retire = '{"status": "employed", **the_rest} --> {"status": "retired", **the_rest}'
>>>
>>> ray = {'name': 'Ray', 'age': 66, 'status': 'employed'}
>>>
>>> transformation = jertl.transform(retire, ray)
>>> transformation.filled
{'status': 'retired', 'name': 'Ray', 'age': 66}

Collating

You can use Jertl to verify relationships between data structures.

>>> supervises = '''
...     supervisor ~ {"underlings": [*_, name, *_]}
...     employee   ~ {"name": name}
...     '''
>>>
>>> jeremy = {'name': 'Jeremy'}
>>> jeff   = {'name': 'Jeff', 'underlings': ['Jimmy', 'Johnny', 'Jeremy', 'Joe']}
>>>
>>> collation = jertl.collate(supervises, supervisor=jeff, employee=jeremy)
>>> collation is not None
True

Inferring

Combining all these operations gives you an inference engine.

>>> rule = '''
...    //
...    // Create a list of movies with their ratings explained
...    //
...    movies       ~ [*_, {"title": title, "MPAA rating": rating},        *_]
...    MPAA_ratings ~ [*_, {"rating": rating, "explanation": explanation}, *_]
... -->
...    movie       := {"title": title, "contents": explanation}
...'''
...
>>> movies = [{'title': 'Toy Story',                          'MPAA rating': 'G'},
...           {'title': 'South Park: Bigger, Longer & Uncut', 'MPAA rating': 'NC-17'}]
...
>>> MPAA_ratings = [{'rating':      'G',
...                  'summary':     'GENERAL AUDIENCES',
...                  'explanation': 'Nothing to offend parents for viewing by children.'},
...                 {'rating':      'PG',
...                  'summary':     'PARENTAL GUIDANCE SUGGESTED',
...                  'explanation': 'May contain some material parents might not like for their young children'},
...                 {'rating':      'PG-13',
...                  'summary':     'PARENTS STRONGLY CAUTIONED',
...                  'explanation': 'Some material may be inappropriate for pre-teens.'},
...                 {'rating':      'R',
...                  'summary':     'RESTRICTED',
...                  'explanation': 'Contains some adult material.'},
...                 {'rating':      'NC-17',
...                  'summary':     'NO ONE 17 AND UNDER ADMITTED',
...                  'explanation': 'Clearly for adults only.'}]
...
>>> for inference in jertl.infer_all(rule, movies=movies, MPAA_ratings=MPAA_ratings):
...     print(inference.fills['movie'])
...
{'title': 'Toy Story', 'contents': 'Nothing to offend parents for viewing by children.'}
{'title': 'South Park: Bigger, Longer & Uncut', 'contents': 'Clearly for adults only.'}

Installation

pip install jertl

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

jertl-0.1.0.tar.gz (78.3 kB view hashes)

Uploaded Source

Built Distribution

jertl-0.1.0-py3-none-any.whl (33.3 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page