Skip to main content

Reference implementations for option pricing formula

Project description

jetblack-options

This repository contains reference implementations of option pricing formulae implemented in Python.

It has no dependencies.

There is a web UI demonstrating some of the valuations here.

Status

This is currently considered alpha.

Usage

The library can be installed as a package.

pip install jetblack-options

An obvious place to start would be with Black-Scholes.

from jetblack_options.european.black_scholes_merton import (
    price,
    delta
)

is_call = True
S = 110 # Asset price.
K = 100 # Strike price.
r = 0.1 # 10% risk free rate.
q = 0.08 # 8% dividend.
T = 6/12 # Half a year till expiry.
v = 0.125 # 12.5% volatility.

b = r - q # Cost of carry for generalized Black-Scholes.

p = price(is_call, S, K, T, r, b, v)
d = delta(is_call, S, K, T, r, b, v)

# Calculate the delta by bumping the price.
from jetblack_options.numeric_greeks.with_carry import NumericGreeks
ng = NumericGreeks(price)
d1 = ng.delta(is_call, S, K, T, r, b, v)

Typically each module has a function called price which calculates the price of the model. Where closed form solutions are available, they have their canonical name (e.g. delta). In this case a general numeric class was also available.

A tree solution only provides a price. However the numeric class can provide support for the greeks.

from jetblack_options.trees.cox_ross_rubinstein import greeks
from jetblack_options.numeric_greeks import NumericGreeks

is_european = True
is_call = True
S = 110 # Stock price.
K = 100 # Strike price.
r = 0.1 # 10% risk free rate.
q = 0.08 # 8% dividend.
T = 6/12 # Half a year till expiry.
v = 0.125 # 12,5% volatility.

b = r - q
value, delta, gamma, theta = greeks(is_european, is_call, S, K, T, r, b, v, 200)

# Make a lambda to handle is_european.
ng = NumericGreeks(
    lambda is_call, S, K, T, r, b, v: greeks(is_european, is_call, S, K, T, r, b, v, 100)[0]
)
# The numeric delta should be close to the analytic.
numeric_delta = ng.delta(is_call, S, K, T, r, b, v)

Pandas

The code has been written without dependencies to keep the implementation clean.

It is fairly simple to support vectors. The following is the generalised Black Scholes price function using scipy, numpy and pandas.

import numpy as np
import pandas as pd
from scipy.stats import norm

def price(is_call, S, K, T, r, b, v):
    d1 = (np.log(S / K) + T * (b + v ** 2 / 2)) / (v * np.sqrt(T))
    d2 = d1 - v * np.sqrt(T)

    if is_call:
        return S * np.exp((b - r) * T) * norm.cdf(d1) - K * np.exp(-r * T) * norm.cdf(d2)
    else:
        return K * np.exp(-r * T) * norm.cdf(-d2) - S * np.exp((b - r) * T) * norm.cdf(-d1)

df = pd.DataFrame([
    {'S': 110, 'K': 100, 'r': 0.1, 'q': 0.08, 'T': 6/12, 'v': 0.125},
    {'S': 100, 'K': 100, 'r': 0.1, 'q': 0.08, 'T': 6/12, 'v': 0.125},
    {'S': 100, 'K': 110, 'r': 0.1, 'q': 0.08, 'T': 6/12, 'v': 0.125},
])

price(True, df['S'], df['K'], df['T'], df['r'], df['r'] - df['q'], df['v'])

Here's another implementation using a single data frame.

import numpy as np
import pandas as pd
from scipy.stats import norm

data = pd.DataFrame([
    {'is_call': True, 'S': 110, 'K': 100, 'r': 0.1, 'q': 0.08, 'T': 6/12, 'v': 0.125},
    {'is_call': False, 'S': 110, 'K': 100, 'r': 0.1, 'q': 0.08, 'T': 6/12, 'v': 0.125},
    {'is_call': True, 'S': 100, 'K': 100, 'r': 0.1, 'q': 0.08, 'T': 6/12, 'v': 0.125},
    {'is_call': False, 'S': 100, 'K': 100, 'r': 0.1, 'q': 0.08, 'T': 6/12, 'v': 0.125},
    {'is_call': True, 'S': 100, 'K': 110, 'r': 0.1, 'q': 0.08, 'T': 6/12, 'v': 0.125},
    {'is_call': False, 'S': 100, 'K': 110, 'r': 0.1, 'q': 0.08, 'T': 6/12, 'v': 0.125},
])

def price(df):
    d1 = (np.log(df['S'] / df['K']) + df['T'] * (df['b'] + df['v'] ** 2 / 2)) / (df['v'] * np.sqrt(df['T']))
    d2 = d1 - df['v'] * np.sqrt(df['T'])

    return pd.Series(np.where(
        df['is_call'],
        df['S'] * np.exp((df['b'] - df['r']) * df['T']) * norm.cdf(d1) - df['K'] * np.exp(-df['r'] * df['T']) * norm.cdf(d2),
        df['K'] * np.exp(-df['r'] * df['T']) * norm.cdf(-d2) - df['S'] * np.exp((df['b'] - df['r']) * df['T']) * norm.cdf(-d1)
    ), name='price')

data['b'] = data['r'] - data['q']
x = price(data)

Contributions

Contributions are welcome!

The goals of the project are centred on clarity and accuracy.

Valuable contributions include:

  • More tests. Note that tests are code too, and have to be maintained. We should aim for the smallest complete set possible. Requests to delete are as relevant as those to add.
  • More implementations. Pricing models should come with tests, and a numerical bumping framework.

The code is formatted with autopep8, and linted with pylint and mypy. Typing is used throughout to help the reader.

Optimisations or integrations with other packages should be included as examples only.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

jetblack-options-1.0.0a1.tar.gz (20.2 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

jetblack_options-1.0.0a1-py3-none-any.whl (31.2 kB view details)

Uploaded Python 3

File details

Details for the file jetblack-options-1.0.0a1.tar.gz.

File metadata

  • Download URL: jetblack-options-1.0.0a1.tar.gz
  • Upload date:
  • Size: 20.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.3

File hashes

Hashes for jetblack-options-1.0.0a1.tar.gz
Algorithm Hash digest
SHA256 dbba1dc9f3ea7b063ec8a9585ecf8d325b465a8016e9ef1a26352ed3386382fa
MD5 50a39dc0e4b615d0dec1e7697566ad29
BLAKE2b-256 d8a3909e3d15f994e8d8eab67b1c49418a9939a585e941c4248fb587f74c01ce

See more details on using hashes here.

File details

Details for the file jetblack_options-1.0.0a1-py3-none-any.whl.

File metadata

File hashes

Hashes for jetblack_options-1.0.0a1-py3-none-any.whl
Algorithm Hash digest
SHA256 67e84794a9b4b76d153d2fa34508c91528085889290bf07bd43378081ba20204
MD5 13a672ebf059c381e58cbfcf9243791c
BLAKE2b-256 2bb382fd0d9ec401eb1fe5fb4246f35007c30d422c90e0eb026b23c0b14b5362

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page