Skip to main content

Serialization for JSON and XML using typing

Project description

jetblack-serialization

Serialization for JSON and XML in Python using typing annotations (read the docs).

Status

It has been tested with Python 3.7 used the typing_extensions package for TypedDict and Annotated. In Python 3.8 the TypedDict class is available in the standard typing package.

Installation

The package can be installed with pip.

pip install jetblack-serialization

Overview

The package adds support for type annotations when serializing or deserializing JSON or XML.

JSON

Given a typed dictionary:

from datetime import datetime
from typing import List, Optional, TypedDict, Union

class Book(TypedDict, total=False):
    book_id: int
    title: str
    author: str
    publication_date: datetime
    keywords: List[str]
    phrases: List[str]
    age: Optional[Union[datetime, int]]
    pages: Optional[int]

Serializing

This could be serialized to JSON as:

from stringcase import camelcase, snakecase
from jetblack_serialization import SerializerConfig
from jetblack_serialization.json import serialize

obj: Book = {
    'author': 'Chairman Mao',
    'book_id': 42,
    'title': 'Little Red Book',
    'publication_date': datetime(1973, 1, 1, 21, 52, 13),
    'keywords': ['Revolution', 'Communism'],
    'phrases': [
        'Revolutionary wars are inevitable in class society',
        'War is the continuation of politics'
    ],
    'age': 24,
}
text = serialize(
    obj,
    Book,
    SerializerConfig(camelcase, snakecase, pretty_print=True)
)
print(text)

giving:

{
    "bookId": 42,
    "title": "Little Red Book",
    "author": "Chairman Mao",
    "publicationDate": "1973-01-01T21:52:13.00Z",
    "keywords": ["Revolution", "Communism"],
    "phrases": ["Revolutionary wars are inevitable in class society", "War is the continuation of politics"],
    "age": 24,
    "pages": null
}

Note the fields have been camel cased, and the publication date has been turned into an ISO 8601 date.

Deserializing

We can deserialize the data as follows:

from stringcase import camelcase, snakecase
from jetblack_serialization import SerializerConfig
from jetblack_serialization.json import deserialize

dct = deserialize(
    text,
    Annotated[Book, JSONValue()],
    SerializerConfig(camelcase, snakecase)
)

XML

The XML version of the typed dictionary might look like this:

from datetime import datetime
from typing import List, Optional, TypedDict, Union
from typing_extensions import Annotated
from jetblack_serialization.xml import XMLEntity, XMLAttribute

class Book(TypedDict, total=False):
    book_id: Annotated[int, XMLAttribute("bookId")]
    title: str
    author: str
    publication_date: datetime
    keywords: Annotated[List[Annotated[str, XMLEntity("Keyword")]], XMLEntity("Keywords")]
    phrases: List[str]
    age: Optional[Union[datetime, int]]
    pages: Optional[int]

Note we have introduced some annotations to control the serialization. For XML we have used pascal-case to serialized the keys and snake-case for deserialization.

Serializing

To serialize we need to provide the containing tag Book:

from stringcase import pascalcase, snakecase
from jetblack_serialization import SerializerConfig
from jetblack_serialization.xml import serialize

book: Book = {
    'author': 'Chairman Mao',
    'book_id': 42,
    'title': 'Little Red Book',
    'publication_date': datetime(1973, 1, 1, 21, 52, 13),
    'keywords': ['Revolution', 'Communism'],
    'phrases': [
        'Revolutionary wars are inevitable in class society',
        'War is the continuation of politics'
    ],
    'age': 24,
    'pages': None
}
text = serialize(
    book,
    Annotated[Book, XMLEntity("Book")],
    SerializerConfig(pascalcase, snakecase)
)
print(text)

Producing:

<Book bookId="42">
    <Title>Little Red Book</Title>
    <Author>Chairman Mao</Author>
    <PublicationDate>1973-01-01T21:52:13.00Z</PublicationDate>
    <Keywords>
        <Keyword>Revolution</Keyword>
        <Keyword>Communism</Keyword>
    </Keywords>
    <Phrase>Revolutionary wars are inevitable in class society</Phrase>
    <Phrase>War is the continuation of politics</Phrase>
    <Age>24</Age>
</Book>'

The annotations are more elaborate here. However, much of the typed dictionary requires no annotation.

First we needed the outer document wrapper XMLEntity("Book").

Next we annotated the book_id to be an XMLAttribute.

Finally we annotated the two lists differently. The keywords list used a nested structure, which we indicated by giving the list a different XMLEntity tag to the list items. For the phrases we used the default in-line behaviour.

Deserializing

We can deserialize the XML as follows:

from stringcase import pascalcase, snakecase
from jetblack_serialization import SerializerConfig
from jetblack_serialization.xml import deserialize

dct = deserialize(
    text,
    Annotated[Book, XMLEntity("Book")],
    SerializerConfig(pascalcase, snakecase)
)

Attributes

For JSON, attributes are typically not required. However JSONProperty(tag: str) and JSONValue() are provided for completeness.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

jetblack-serialization-3.1.1.tar.gz (19.0 kB view details)

Uploaded Source

Built Distribution

jetblack_serialization-3.1.1-py3-none-any.whl (25.8 kB view details)

Uploaded Python 3

File details

Details for the file jetblack-serialization-3.1.1.tar.gz.

File metadata

  • Download URL: jetblack-serialization-3.1.1.tar.gz
  • Upload date:
  • Size: 19.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.12 CPython/3.10.14 Darwin/23.5.0

File hashes

Hashes for jetblack-serialization-3.1.1.tar.gz
Algorithm Hash digest
SHA256 ee06e5856953f8641fba46a850231da1c96892f91053fdd86b25792c6925db1c
MD5 701f49588c218cb568cbde288d587088
BLAKE2b-256 efc573c652615bcc23c136aed53b11cb000b2d535ebd431a5ed0427f2c982868

See more details on using hashes here.

File details

Details for the file jetblack_serialization-3.1.1-py3-none-any.whl.

File metadata

File hashes

Hashes for jetblack_serialization-3.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 334b049a3eb916a425dec95a079372d1f8f9adc466c7177000bf8dd517996e05
MD5 c9ad4c56e55093ce4b473b4e48d8297c
BLAKE2b-256 e58336ef715c0dfa96d8ca0cca6c7a16c1276bde5ae47d5c473016dbc7688b64

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page