Serialization for JSON and XML using typing
Project description
jetblack-serialization
Serialization for JSON and XML in Python using typing annotations (read the docs).
Status
It has been tested with Python 3.7 used the typing_extensions
package for TypedDict
and Annotated
. In Python 3.8 the TypedDict
class is available in the standard typing
package.
Installation
The package can be installed with pip.
pip install jetblack-serialization
Overview
The package adds support for type annotations when serializing or deserializing JSON or XML.
JSON
Given a typed dictionary:
from datetime import datetime
from typing import List, Optional, TypedDict, Union
class Book(TypedDict, total=False):
book_id: int
title: str
author: str
publication_date: datetime
keywords: List[str]
phrases: List[str]
age: Optional[Union[datetime, int]]
pages: Optional[int]
Serializing
This could be serialized to JSON as:
from stringcase import camelcase, snakecase
from jetblack_serialization import SerializerConfig
from jetblack_serialization.json import serialize
obj: Book = {
'author': 'Chairman Mao',
'book_id': 42,
'title': 'Little Red Book',
'publication_date': datetime(1973, 1, 1, 21, 52, 13),
'keywords': ['Revolution', 'Communism'],
'phrases': [
'Revolutionary wars are inevitable in class society',
'War is the continuation of politics'
],
'age': 24,
}
text = serialize(
obj,
Book,
SerializerConfig(camelcase, snakecase, pretty_print=True)
)
print(text)
giving:
{
"bookId": 42,
"title": "Little Red Book",
"author": "Chairman Mao",
"publicationDate": "1973-01-01T21:52:13.00Z",
"keywords": ["Revolution", "Communism"],
"phrases": ["Revolutionary wars are inevitable in class society", "War is the continuation of politics"],
"age": 24,
"pages": null
}
Note the fields have been camel cased, and the publication date has been turned into an ISO 8601 date.
Deserializing
We can deserialize the data as follows:
from stringcase import camelcase, snakecase
from jetblack_serialization import SerializerConfig
from jetblack_serialization.json import deserialize
dct = deserialize(
text,
Annotated[Book, JSONValue()],
SerializerConfig(camelcase, snakecase)
)
XML
The XML version of the typed dictionary might look like this:
from datetime import datetime
from typing import List, Optional, TypedDict, Union
from typing_extensions import Annotated
from jetblack_serialization.xml import XMLEntity, XMLAttribute
class Book(TypedDict, total=False):
book_id: Annotated[int, XMLAttribute("bookId")]
title: str
author: str
publication_date: datetime
keywords: Annotated[List[Annotated[str, XMLEntity("Keyword")]], XMLEntity("Keywords")]
phrases: List[str]
age: Optional[Union[datetime, int]]
pages: Optional[int]
Note we have introduced some annotations to control the serialization. For XML we have used pascal-case to serialized the keys and snake-case for deserialization.
Serializing
To serialize we need to provide the containing tag Book
:
from stringcase import pascalcase, snakecase
from jetblack_serialization import SerializerConfig
from jetblack_serialization.xml import serialize
book: Book = {
'author': 'Chairman Mao',
'book_id': 42,
'title': 'Little Red Book',
'publication_date': datetime(1973, 1, 1, 21, 52, 13),
'keywords': ['Revolution', 'Communism'],
'phrases': [
'Revolutionary wars are inevitable in class society',
'War is the continuation of politics'
],
'age': 24,
'pages': None
}
text = serialize(
book,
Annotated[Book, XMLEntity("Book")],
SerializerConfig(pascalcase, snakecase)
)
print(text)
Producing:
<Book bookId="42">
<Title>Little Red Book</Title>
<Author>Chairman Mao</Author>
<PublicationDate>1973-01-01T21:52:13.00Z</PublicationDate>
<Keywords>
<Keyword>Revolution</Keyword>
<Keyword>Communism</Keyword>
</Keywords>
<Phrase>Revolutionary wars are inevitable in class society</Phrase>
<Phrase>War is the continuation of politics</Phrase>
<Age>24</Age>
</Book>'
The annotations are more elaborate here. However, much of the typed dictionary requires no annotation.
First we needed the outer document wrapper XMLEntity("Book")
.
Next we annotated the book_id
to be an XMLAttribute
.
Finally we annotated the two lists differently. The keywords
list used
a nested structure, which we indicated by giving the list a different
XMLEntity
tag to the list items. For the phrases we used the default
in-line behaviour.
Deserializing
We can deserialize the XML as follows:
from stringcase import pascalcase, snakecase
from jetblack_serialization import SerializerConfig
from jetblack_serialization.xml import deserialize
dct = deserialize(
text,
Annotated[Book, XMLEntity("Book")],
SerializerConfig(pascalcase, snakecase)
)
Attributes
For JSON, attributes are typically not required. However
JSONProperty(tag: str)
and JSONValue()
are provided for
completeness.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file jetblack-serialization-3.1.1.tar.gz
.
File metadata
- Download URL: jetblack-serialization-3.1.1.tar.gz
- Upload date:
- Size: 19.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.1.12 CPython/3.10.14 Darwin/23.5.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ee06e5856953f8641fba46a850231da1c96892f91053fdd86b25792c6925db1c |
|
MD5 | 701f49588c218cb568cbde288d587088 |
|
BLAKE2b-256 | efc573c652615bcc23c136aed53b11cb000b2d535ebd431a5ed0427f2c982868 |
File details
Details for the file jetblack_serialization-3.1.1-py3-none-any.whl
.
File metadata
- Download URL: jetblack_serialization-3.1.1-py3-none-any.whl
- Upload date:
- Size: 25.8 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.1.12 CPython/3.10.14 Darwin/23.5.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 334b049a3eb916a425dec95a079372d1f8f9adc466c7177000bf8dd517996e05 |
|
MD5 | c9ad4c56e55093ce4b473b4e48d8297c |
|
BLAKE2b-256 | e58336ef715c0dfa96d8ca0cca6c7a16c1276bde5ae47d5c473016dbc7688b64 |