Skip to main content

A framework for self-consistent modeling and fitting of astrophysical relativistic jets SEDs

Project description

JetSeT is an open source C/Python framework to reproduce radiative and accelerative processes acting in relativistic jets, and galactic objects (beamed and unbeamed), allowing to fit the numerical models to observed data. The main features of this framework are:

  • handling observed data: re-binning, definition of data sets, bindings to astropy tables and quantities definition of complex numerical radiative scenarios: Synchrotron Self-Compton (SSC), external Compton (EC) and EC against the CMB

  • Constraining of the model in the pre-fitting stage, based on accurate and already published phenomenological trends. In particular, starting from phenomenological parameters, such as spectral indices, peak fluxes and frequencies, and spectral curvatures, that the code evaluates automatically, the pre-fitting algorithm is able to provide a good starting model,following the phenomenological trends that I have implemented. fitting of multiwavelength SEDs using
    both frequentist approach (iminuit) and bayesian MCMC sampling (emcee)

  • Self-consistent temporal evolution of the plasma under the effect of radiative and accelerative processes, both first
    order and second order (stochastic acceleration) processes.

Acknowledgements

If you use this code in any kind of scientific publication please cite the following papers:

Licence

JetSeT is released under a 3-clause BSD license, for deatils see License file

Documentation

visit: https://jetset.readthedocs.io/en/latest/

visit: https://github.com/andreatramacere/jetset

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

jetset-1.3.0.tar.gz (6.0 MB view details)

Uploaded Source

Built Distributions

jetset-1.3.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

jetset-1.3.0-cp311-cp311-macosx_11_0_arm64.whl (6.2 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

jetset-1.3.0-cp311-cp311-macosx_10_9_x86_64.whl (6.2 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

jetset-1.3.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

jetset-1.3.0-cp310-cp310-macosx_10_9_x86_64.whl (6.2 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

jetset-1.3.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

jetset-1.3.0-cp39-cp39-macosx_10_9_x86_64.whl (6.2 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

File details

Details for the file jetset-1.3.0.tar.gz.

File metadata

  • Download URL: jetset-1.3.0.tar.gz
  • Upload date:
  • Size: 6.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.14

File hashes

Hashes for jetset-1.3.0.tar.gz
Algorithm Hash digest
SHA256 b300a6dcf325f7eabd0a79ec9e66ee52929b11bbb0d3e1ddbda4b6fa680219fb
MD5 e8779bf53409e7fc0fcd5fe75a895ab3
BLAKE2b-256 3268eb08630cde73199262fb095faa0c0f69a1a84f780fbacd162cda038f078f

See more details on using hashes here.

File details

Details for the file jetset-1.3.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for jetset-1.3.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 08780e574ec57f7b37b6b961f792682ae36f4648edaa944d33ddf9b8334d9219
MD5 65da7907df37a04d1f225a8ca865fa0b
BLAKE2b-256 11ee85a63e84f4761ca7a2d2cccbfd26d2c0f4c886758f34638c0e1515211c03

See more details on using hashes here.

File details

Details for the file jetset-1.3.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for jetset-1.3.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 fc7a3d873b0fb065bc152f6248390b2257dbcb0772e7fa23c9e0243958843d3b
MD5 d6fed5edf567dbf2ffd9823e0d800478
BLAKE2b-256 7a8589f12736d3b658d730da2ca89e40f5f2233580bcea6c01eddb5d5c363721

See more details on using hashes here.

File details

Details for the file jetset-1.3.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for jetset-1.3.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 37a4432c60e7d56ce6c1b9c43cceded2dc335d71f2abdafdcb109671dcfadb64
MD5 3d25c1eb42c936c084365e05102be78c
BLAKE2b-256 87e3ef4d3ba84ca0132bd75e0b967b7ad3f6ebecbf5404b8f0d095ce02b189dd

See more details on using hashes here.

File details

Details for the file jetset-1.3.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for jetset-1.3.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ed47212cdf3f177b667bfdac16c5ad1700ac8c446fd0a996294059472976ab86
MD5 6848dc1970bab4d2e8ddabf4363a8377
BLAKE2b-256 23304800be55b05c9532bbaafa995ca95583265414fbc0729a564a5a1b6f18cb

See more details on using hashes here.

File details

Details for the file jetset-1.3.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for jetset-1.3.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 138da092ec71be96cbb23e086f9782832985cc4d757f3a238acce91ebe88dc05
MD5 cd3483d55937a0668cb0b84384d3d187
BLAKE2b-256 8f4a2ac402e3bd693cc4e20186014a0996b86f2d8d0f38a667bce5e136835f91

See more details on using hashes here.

File details

Details for the file jetset-1.3.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for jetset-1.3.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 499359e178315385131f50020f41c6b26d1d9972800fa569f5ce377cf6598a7d
MD5 eca85a338c3931134e83260cd3e3867e
BLAKE2b-256 e1886cc7225c533636e83ec86e50a049453f4c7bc0a25632ae321b5498787374

See more details on using hashes here.

File details

Details for the file jetset-1.3.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for jetset-1.3.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b720927f063e2579409c8b3cecf4c0d1fd2529fb41e9811cb7e1cdddb60fd10b
MD5 041687a3fede40ba347c766a5d3f30c2
BLAKE2b-256 30e669e66358c297c7df7a3527477c98e0c821dec444cd7edc9bc19dca2131c2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page