Skip to main content

No project description provided

Project description

JijZeptDashboard-Client

The JijZeptDashboard-Client has two features. The first feature is to add descriptions to your mathematical model using JijModeling. The second feature is to register your mathematical model on the JijZeptDashboard.

How to use

You can register your mathematical model on the JijZeptDashboard as follows:

import jijmodeling as jm
import jijzept_dashboard_client as jdc

# Define your mathematical model with JijModeling
d = jm.Placeholder("d", ndim=2, description="Distance matrix")
N = d.len_at(0, latex="N", description="Number of cities")
i = jm.Element("i", belong_to=(0, N), description="City index")
j = jm.Element("j", belong_to=(0, N), description="City index")
t = jm.Element("t", belong_to=(0, N), description="City index")
x = jm.BinaryVar("x", shape=(N, N), description="Assignment matrix")

problem = jm.Problem("TSP")
problem += jm.sum([i, j], d[i, j] * jm.sum(t, x[i, t] * x[j, (t + 1) % N]))
problem += jm.Constraint("one-city", jm.sum(i, x[i, t]) == 1, forall=t)
problem += jm.Constraint("one-time", jm.sum(t, x[i, t]) == 1, forall=i)

# Add descriptions to your mathematical model
jdc_problem = jdc.Problem.from_jm_problem(
    problem,
    objective_description="Minimize total distance",
    constraint_descriptions={
        "one-city": "Each city is visited exactly once",
        "one-time": "Each person visits exactly one city",
    }
)

# Register your mathematical model on the JijZeptDashboard
client = jdc.JijZeptDashboardClient(
    url="*** url for registration ***",
    email="*** your email address ***",
    password="*** your password ***",
)
response = client.register_model(jdc_problem, project_id=1)

You can add descriptions to the objective function and constraints by using jdc.Problem.from_jm_problem. On the other hand, to add descriptions to decision variables, placeholders and elements, you need to use JijModeling.

Define a problem in an alternative way

You can define a mathematical model with descriptions using the constractor of jdc.Problem as follows:

import jijmodeling as jm
import jijzept_dashboard_client as jdc

# Define your mathematical model with JijModeling
d = jm.Placeholder("d", ndim=2, description="Distance matrix")
N = d.len_at(0, latex="N", description="Number of cities")
i = jm.Element("i", belong_to=(0, N), description="City index")
j = jm.Element("j", belong_to=(0, N), description="City index")
t = jm.Element("t", belong_to=(0, N), description="City index")
x = jm.BinaryVar("x", shape=(N, N), description="Assignment matrix")

problem = jdc.Problem("TSP")
problem += (
    jm.sum([i, j], d[i, j] * jm.sum(t, x[i, t] * x[j, (t + 1) % N])),
    "Minimize total distance",
)
problem += (
    jm.Constraint("one-city", jm.sum(i, x[i, t]) == 1, forall=t),
    "Each city is visited exactly once",
)
problem += (
    jm.Constraint("one-time", jm.sum(t, x[i, t]) == 1, forall=i),
    "Each person visits exactly one city",
)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

jijzept_dashboard_client-0.1.3.tar.gz (8.4 kB view details)

Uploaded Source

Built Distribution

jijzept_dashboard_client-0.1.3-py3-none-any.whl (9.7 kB view details)

Uploaded Python 3

File details

Details for the file jijzept_dashboard_client-0.1.3.tar.gz.

File metadata

File hashes

Hashes for jijzept_dashboard_client-0.1.3.tar.gz
Algorithm Hash digest
SHA256 3c72d7fcbdf5939c199002a300fe7ec9e74b76a90907bc8696cf2f5733e30baf
MD5 9170630f22480b135594ccfc78c501df
BLAKE2b-256 55200a890ab463bf36aea2fbc36fa56ac67fbdaa9682d4062606641dd702d57b

See more details on using hashes here.

File details

Details for the file jijzept_dashboard_client-0.1.3-py3-none-any.whl.

File metadata

File hashes

Hashes for jijzept_dashboard_client-0.1.3-py3-none-any.whl
Algorithm Hash digest
SHA256 597767c970ed5d1051f315c72ee427a800ec83e466f21ae962343e8b141ce588
MD5 079c6117c46bb0fb99b1bc8fd85f0478
BLAKE2b-256 5a10d011dd734dfb2780eb848261e3e484c7605d0626a07dbf7d7b65afe4c3ce

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page