Skip to main content

JSON/YAML homoiconic templating language

Project description

JSON/YAML homoiconic templating language

Downloads PyPI version

python3 -m pip install jinsi

Usage via CLI

python3 -m jinsi -  # read from stdin
python3 -m jinsi -j -  # read from stdin, render as json
python3 -m jinsi file1.yaml file2.yaml

Usage via API

from jinsi import render_json, render_yaml, render_file_json, render_file_yaml

print(render_file_yaml("file.yaml"))
# -> prints YAML

print(render_file_json("file.yaml"))
# -> prints minified JSON

print(render_yaml("""
    a: 3
    b:
      ::get: $arg1
    """, arg1="bar"))
# -> prints YAML

print(render_json("""
    a: 3
    b:
      ::get: $arg1
    """, arg1="foo"))
# -> prints JSON

Examples

Cloudformation Template

YAML input:

::let:
  user:
    ::object:
      - ::titlecase:
          ::get: $user.username
      - Type: AWS::IAM::User
        Properties:
          UserName:
            ::get: $user.username
          Groups:
            - Administrators
          LoginProfile:
            Password:
              ::get: $user.password
              ::else: default
            PasswordResetRequired: Yes
  users:
    ::merge:
      ::each $ as $user:
        ::call user:

Resources:
  ::call users:
    - username: jim
      password: one
    - username: jack
      password: two
    - username: johnny

Rendered output:

Resources:
  Jack:
    Properties:
      Groups:
      - Administrators
      LoginProfile:
        Password: two
        PasswordResetRequired: true
      UserName: jack
    Type: AWS::IAM::User
  Jim:
    Properties:
      Groups:
      - Administrators
      LoginProfile:
        Password: one
        PasswordResetRequired: true
      UserName: jim
    Type: AWS::IAM::User
  Johnny:
    Properties:
      Groups:
      - Administrators
      LoginProfile:
        Password: default
        PasswordResetRequired: true
      UserName: johnny
    Type: AWS::IAM::User

Fibonacci

This is just an example to show how complex a template can be. Also note: The fibonacci function is defined recursively. This would blow up and values upto 50 could not be computed. Since Jinsi is purely functional, functions are mappings and can be cached. This is why the computation returns quickly (at all).

python3 -m jinsi max=50 -

YAML input:

::let:
  fib:
    ::when:
      ::get: $n == 0 or $n == 1
    ::then:
      ::get: $n
    ::else:
      ::add:
        - ::call fib:
            $n:
              ::get: $n - 1
        - ::call fib:
            $n:
              ::get: $n - 2
  fibs:
    ::range_exclusive:
      - 0
      - ::get: $max
        ::else: 10

result:
  ::each fibs as $n:
    ::call: fib

Rendered output:

result:
- 0
- 1
- 1
- 2
- 3
- 5
- 8
- 13
- 21
- 34
- 55
- 89
- 144
- 233
- 377
- 610
- 987
- 1597
- 2584
- 4181
- 6765
- 10946
- 17711
- 28657
- 46368
- 75025
- 121393
- 196418
- 317811
- 514229
- 832040
- 1346269
- 2178309
- 3524578
- 5702887
- 9227465
- 14930352
- 24157817
- 39088169
- 63245986
- 102334155
- 165580141
- 267914296
- 433494437
- 701408733
- 1134903170
- 1836311903
- 2971215073
- 4807526976
- 7778742049

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

jinsi-0.5.1.tar.gz (17.0 kB view details)

Uploaded Source

Built Distribution

jinsi-0.5.1-py3-none-any.whl (19.4 kB view details)

Uploaded Python 3

File details

Details for the file jinsi-0.5.1.tar.gz.

File metadata

  • Download URL: jinsi-0.5.1.tar.gz
  • Upload date:
  • Size: 17.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.8.3

File hashes

Hashes for jinsi-0.5.1.tar.gz
Algorithm Hash digest
SHA256 0d54d66909e89c6f5aa9ddaaf30965aac9ab462c19f30f543fa622020b1fb950
MD5 16b16237bd7a3804dd48432375a63f3e
BLAKE2b-256 0d13ab00386dda7cd31c8f544ae268e91d57f78af2a9db43c83db0943bf9327c

See more details on using hashes here.

File details

Details for the file jinsi-0.5.1-py3-none-any.whl.

File metadata

  • Download URL: jinsi-0.5.1-py3-none-any.whl
  • Upload date:
  • Size: 19.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.8.3

File hashes

Hashes for jinsi-0.5.1-py3-none-any.whl
Algorithm Hash digest
SHA256 7e930eec534961ad98520159cf59f9561768bfd9a7518c83e1eda8118c6d3398
MD5 f5390f8aa495fbfb76098509acc2366a
BLAKE2b-256 eb14a2d61355a4492d5595e19b2719c12e4826eff3fa7e21837fd26186cd9dd5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page