Skip to main content

A minimal JupyterLab extension with backend and frontend parts.

Project description

Server Hello World

Create a minimal extension with backend (i.e. server) and frontend parts.

server extension example

It is strongly recommended to read the basic hello-world example before diving into this one.

The template folder structure

Writing a JupyterLab extension usually starts from a configurable template. It can be downloaded with the cookiecutter tool and the following command for an extension with a server part:

cookiecutter https://github.com/jupyterlab/extension-cookiecutter-ts

cookiecutter asks for some basic information that could for example be setup like this (be careful to set has_server_extension to y):

author_name []: tuto
author_email []: tuto@help.you
labextension_name [myextension]: jlab-ext-example
python_name [jlab_ext_example]:
project_short_description [A JupyterLab extension.]: A minimal JupyterLab extension with backend and frontend parts.
has_settings [n]:
has_server_extension [n]: y
has_binder [n]: y
repository [https://github.com/github_username/jlab-ext-example]:

The python name should not contain -. It is nice for user to test your extension online, so the has_binder was set to yes.

The cookiecutter creates the directory jlab_ext_example [or your extension name] that looks like this:

jlab_ext_example/
│  # Generic Files   .gitignore
│   install.json                # Information retrieved by JupyterLab to help users know how to manage the extension   LICENSE                     # License of your code   README.md                   # Instructions to install and build
│
├───.github
│   └───workflows
│           build.yml
│
├───binder
│       environment.yml
│       postBuild
│    # Python Package Files   MANIFEST.in                 # Help Python to list your source files   pyproject.toml              # Define dependencies for building the package   setup.py                    # Information about the package
│
│  # Backend (server) Files
├───jupyter-config
│       jlab_ext_example.json   # Server extension enabler
│
├───jlab_ext_example
│       handlers.py             # API handler (where things happen)       _version.py             # Server extension version       __init__.py             # Hook the extension in the server    # Frontend Files   .eslintignore               # Code linter configuration   .eslintrc.js
│   .prettierignore             # Code formatter configuration   .prettierrc
│   package.json                # Information about the frontend package   tsconfig.json               # Typescript compilation configuration  
├───src
│       index.ts                # Actual code of the extension       handler.ts       # More code used by the extension
│
└───style
        base.css               # CSS styling
        index.css
        index.js

There are two major parts in the extension:

  • A Python package for the server extension and the packaging
  • A NPM package for the frontend extension

In this example, you will see that the template code have been extended to demonstrate the use of GET and POST HTTP requests.

Frontend Part

The entry point for the frontend extension is src/index.ts. The communication with the server extension is contained in another file src/handler.ts. So you need to import it:

// src/index.ts#L12-L12

import { requestAPI } from './handler';

In the activate function, the server extension is first called through a GET request on the endpoint /jlab-ext-example/hello. The response from the server is printed in the web browser console:

// src/index.ts#L36-L42

// GET request
try {
  const data = await requestAPI<any>('hello');
  console.log(data);
} catch (reason) {
  console.error(`Error on GET /jlab-ext-example/hello.\n${reason}`);
}

As the server response is not instantaneous, the request is done asynchronously using the await keyword:

// src/index.ts#L38-L38

const data = await requestAPI<any>('hello');

To use that await keyword, the function must be declared as asynchronous using the async keyword:

// src/index.ts#L29-L33

activate: async (
  app: JupyterFrontEnd,
  palette: ICommandPalette,
  launcher: ILauncher | null
) => {

A GET request cannot carry data from the frontend to the server. To achieve that, you will need to execute a POST request. In this example, a POST request is sent to the /jlab-ext-example/hello endpoint with the data {name: 'George'}:

// src/index.ts#L45-L56

const dataToSend = { name: 'George' };
try {
  const reply = await requestAPI<any>('hello', {
    body: JSON.stringify(dataToSend),
    method: 'POST',
  });
  console.log(reply);
} catch (reason) {
  console.error(
    `Error on POST /jlab-ext-example/hello ${dataToSend}.\n${reason}`
  );
}

The difference with the GET request is the use of the body option to send data and the method option to set the appropriate HTTP method.

The data sent from the frontend to the backend can have different types. In JupyterLab, the most common format is JSON. But JSON cannot directly be sent to the server, it needs to be stringified to be carried over by the request.

The communication logic with the server is hidden in the requestAPI function. Its definition is :

// src/handler.ts#L12-L37

export async function requestAPI<T>(
  endPoint = '',
  init: RequestInit = {}
): Promise<T> {
  // Make request to Jupyter API
  const settings = ServerConnection.makeSettings();
  const requestUrl = URLExt.join(
    settings.baseUrl,
    'jlab-ext-example',
    endPoint
  );

  let response: Response;
  try {
    response = await ServerConnection.makeRequest(requestUrl, init, settings);
  } catch (error) {
    throw new ServerConnection.NetworkError(error);
  }

  const data = await response.json();

  if (!response.ok) {
    throw new ServerConnection.ResponseError(response, data.message);
  }

  return data;

First the server settings are obtained from:

// src/handler.ts#L17-L17

const settings = ServerConnection.makeSettings();

This requires to add @jupyterlab/services to the package dependencies:

jlpm add @jupyterlab/services

Then the class ServerConnection can be imported:

// src/handler.ts#L3-L3

import { ServerConnection } from '@jupyterlab/services';

The next step is to build the full request URL:

// src/handler.ts#L18-L21

const requestUrl = URLExt.join(
  settings.baseUrl,
  'jlab-ext-example',
  endPoint

To concatenate the various parts, the URLExt utility is imported:

// src/handler.ts#L1-L1

import { URLExt } from '@jupyterlab/coreutils';

This requires to add another dependency to the package:

jlpm add @jupyterlab/coreutils

You now have all the elements to make the request:

// src/handler.ts#L26-L26

response = await ServerConnection.makeRequest(requestUrl, init, settings);

Finally, once the server response is obtained, its body is interpreted as JSON. And the resulting data is returned.

// src/handler.ts#L31-L37

const data = await response.json();

if (!response.ok) {
  throw new ServerConnection.ResponseError(response, data.message);
}

return data;

This example also showcases how you can serve static files from the server extension.

// src/index.ts#L58-L79

const { commands, shell } = app;
const command = CommandIDs.get;
const category = 'Extension Examples';

commands.addCommand(command, {
  label: 'Get Server Content in a IFrame Widget',
  caption: 'Get Server Content in a IFrame Widget',
  execute: () => {
    const widget = new IFrameWidget();
    shell.add(widget, 'main');
  },
});

palette.addItem({ command, category: category });

if (launcher) {
  // Add launcher
  launcher.add({
    command: command,
    category: category,
  });
}

Invoking the command (via the command palette or the launcher) will open a new tab with an IFrame that will display static content fetched from the server extension.

Note

  • If the response is not ok (i.e. status code not in range 200-299), a ResponseError is thrown.
  • The response body is interpreted as JSON even in case the response is not ok. In JupyterLab, it is a good practice in case of error on the server side to return a response with a JSON body. It should at least define a message key providing nice error message for the user.

Backend (Server) Part

The server part of the extension is going to be presented in this section.

JupyterLab server is built on top of the Tornado Python package. To extend the server, your extension needs to be defined as a proper Python package with some hook functions:

# jlab_ext_example/__init__.py

import json
from pathlib import Path

from .handlers import setup_handlers
from ._version import __version__

HERE = Path(__file__).parent.resolve()

with (HERE / "labextension" / "package.json").open() as fid:
    data = json.load(fid)


def _jupyter_labextension_paths():
    return [{"src": "labextension", "dest": data["name"]}]


def _jupyter_server_extension_points():
    return [{"module": "jlab_ext_example"}]


def _load_jupyter_server_extension(server_app):
    """Registers the API handler to receive HTTP requests from the frontend extension.
    Parameters
    ----------
    server_app: jupyterlab.labapp.LabApp
        JupyterLab application instance
    """
    url_path = "jlab-ext-example"
    setup_handlers(server_app.web_app, url_path)
    server_app.log.info(
        f"Registered jlab_ext_example extension at URL path /{url_path}"
    )

# For backward compatibility with the classical notebook
load_jupyter_server_extension = _load_jupyter_server_extension

The _jupyter_server_extension_points provides the Python package name to the server. But the most important one is _load_jupyter_server_extension that register new handlers.

# jlab_ext_example/__init__.py#L29-L29

setup_handlers(server_app.web_app, url_path)

A handler is registered in the web application by linking an url to a class. In this example the url is base_server_url/jlab-ext-example/hello and the class handler is RouteHandler:

# jlab_ext_example/handlers.py#L28-L34

host_pattern = ".*$"
base_url = web_app.settings["base_url"]

# Prepend the base_url so that it works in a JupyterHub setting
route_pattern = url_path_join(base_url, url_path, "hello")
handlers = [(route_pattern, RouteHandler)]
web_app.add_handlers(host_pattern, handlers)

For Jupyter server, the handler class must inherit from the APIHandler and it should implement the wanted HTTP verbs. For example, here, /jlab-ext-example/hello can be requested by a GET or a POST request. They will call the get or post method respectively.

# jlab_ext_example/handlers.py#L11-L24

class RouteHandler(APIHandler):
    # The following decorator should be present on all verb methods (head, get, post,
    # patch, put, delete, options) to ensure only authorized user can request the
    # Jupyter server
    @tornado.web.authenticated
    def get(self):
        self.finish(json.dumps({"data": "This is /jlab-ext-example/hello endpoint!"}))

    @tornado.web.authenticated
    def post(self):
        # input_data is a dictionary with a key "name"
        input_data = self.get_json_body()
        data = {"greetings": "Hello {}, enjoy JupyterLab!".format(input_data["name"])}
        self.finish(json.dumps(data))

Security Note

The methods to handle request like get, post, etc. must be decorated with tornado.web.authenticated to ensure only authenticated users can request the Jupyter server.

Once the server has carried out the appropriate task, the handler should finish the request by calling the finish method. That method can optionally take an argument that will become the response body of the request in the frontend.

# jlab_ext_example/handlers.py#L16-L17

def get(self):
    self.finish(json.dumps({"data": "This is /jlab-ext-example/hello endpoint!"}))

In Jupyter, it is common to use JSON as format between the frontend and the backend. But it should first be stringified to be a valid response body. This can be done using json.dumps on a dictionary.

A POST request is similar to a GET request except it may have a body containing data sent by the frontend. When using JSON as communication format, you can directly use the get_json_body helper method to convert the request body into a Python dictionary.

# jlab_ext_example/handlers.py#L22-L23

input_data = self.get_json_body()
data = {"greetings": "Hello {}, enjoy JupyterLab!".format(input_data["name"])}

The part responsible to serve static content with a StaticFileHandler handler is the following:

# jlab_ext_example/handlers.py#L37-L43

doc_url = url_path_join(base_url, url_path, "public")
doc_dir = os.getenv(
    "JLAB_SERVER_EXAMPLE_STATIC_DIR",
    os.path.join(os.path.dirname(__file__), "public"),
)
handlers = [("{}/(.*)".format(doc_url), StaticFileHandler, {"path": doc_dir})]
web_app.add_handlers(".*$", handlers)

Security Note

The StaticFileHandler is not secured. For enhanced security, please consider using AuthenticatedFileHandler.

Note

Server extensions can be used for different frontends (like JupyterLab and the classical Jupyter Notebook). Some additional documentation is available in the Notebook documentation

Packaging the Extension

Python Package Manager

In the previous sections, the acting code has been described. But there are other files with the sole purpose of packaging the full extension nicely to help its distribution through package managers like pip.

Note: In particular, jupyter-packaging provides helpers to package and install JS files with a Python package for Jupyter frontends (classical notebook, JupyterLab,...). As this package is a setup requirement, it needs to be specified in the pyproject.toml to be installed by pip.

The setup.py file is the entry point to describe package metadata:

# setup.py

"""
jlab_ext_example setup
"""
import json
import sys
from pathlib import Path

import setuptools

HERE = Path(__file__).parent.resolve()

# The name of the project
name = "jlab_ext_example"

lab_path = (HERE / name.replace("-", "_") / "labextension")

# Representative files that should exist after a successful build
ensured_targets = [
    str(lab_path / "package.json"),
    str(lab_path / "static/style.js")
]

labext_name = "@jupyterlab-examples/server-extension"

data_files_spec = [
    ("share/jupyter/labextensions/%s" % labext_name, str(lab_path.relative_to(HERE)), "**"),
    ("share/jupyter/labextensions/%s" % labext_name, str("."), "install.json"),
    ("etc/jupyter/jupyter_server_config.d",
     "jupyter-config/server-config", "jlab_ext_example.json"),
    # For backward compatibility with notebook server
    ("etc/jupyter/jupyter_notebook_config.d",
     "jupyter-config/nb-config", "jlab_ext_example.json"),
]

long_description = (HERE / "README.md").read_text()

# Get the package info from package.json
pkg_json = json.loads((HERE / "package.json").read_bytes())

setup_args = dict(
    name=name,
    version=pkg_json["version"],
    url=pkg_json["homepage"],
    author=pkg_json["author"]["name"],
    author_email=pkg_json["author"]["email"],
    description=pkg_json["description"],
    license=pkg_json["license"],
    long_description=long_description,
    long_description_content_type="text/markdown",
    packages=setuptools.find_packages(),
    install_requires=[
        "jupyter_server>=1.6,<2"
    ],
    zip_safe=False,
    include_package_data=True,
    python_requires=">=3.6",
    platforms="Linux, Mac OS X, Windows",
    keywords=["Jupyter", "JupyterLab", "JupyterLab3"],
    classifiers=[
        "License :: OSI Approved :: BSD License",
        "Programming Language :: Python",
        "Programming Language :: Python :: 3",
        "Programming Language :: Python :: 3.6",
        "Programming Language :: Python :: 3.7",
        "Programming Language :: Python :: 3.8",
        "Programming Language :: Python :: 3.9",
        "Framework :: Jupyter",
    ],
)

try:
    from jupyter_packaging import (
        wrap_installers,
        npm_builder,
        get_data_files
    )
    post_develop = npm_builder(
        build_cmd="install:extension", source_dir="src", build_dir=lab_path
    )
    setup_args["cmdclass"] = wrap_installers(post_develop=post_develop, ensured_targets=ensured_targets)
    setup_args["data_files"] = get_data_files(data_files_spec)
except ImportError as e:
    import logging
    logging.basicConfig(format="%(levelname)s: %(message)s")
    logging.warning("Build tool `jupyter-packaging` is missing. Install it with pip or conda.")
    if not ("--name" in sys.argv or "--version" in sys.argv):
        raise e

if __name__ == "__main__":
    setuptools.setup(**setup_args)

But in this case, it is a bit more complicated to build the frontend extension and ship it directly with the Python package. To deploy simultaneously the frontend and the backend, the frontend NPM package needs to be built and inserted in the Python package. This is done using a special a dedicated builder following PEP 517 from package jupyter-packaging. Its configuration is done in pyproject.toml:

# pyproject.toml

[build-system]
requires = ["jupyter_packaging~=0.10,<2", "jupyterlab~=3.1"]
build-backend = "jupyter_packaging.build_api"

[tool.jupyter-packaging.options]
skip-if-exists = ["jlab_ext_example/labextension/static/style.js"]
ensured-targets = ["jlab_ext_example/labextension/static/style.js", "jlab_ext_example/labextension/package.json"]

[tool.jupyter-packaging.builder]
factory = "jupyter_packaging.npm_builder"

[tool.jupyter-packaging.build-args]
build_cmd = "build:prod"
npm = ["jlpm"]

[tool.check-manifest]
ignore = ["jlab_ext_example/labextension/**", "yarn.lock", ".*", "package-lock.json"]

It will build the frontend NPM package through its factory:

# pyproject.toml#L9-L14

[tool.jupyter-packaging.builder]
factory = "jupyter_packaging.npm_builder"

[tool.jupyter-packaging.build-args]
build_cmd = "build:prod"
npm = ["jlpm"]

It will ensure one of the generated files is jlab_ext_example/labextension/package.json:

# pyproject.toml#L7-L7

ensured-targets = ["jlab_ext_example/labextension/static/style.js", "jlab_ext_example/labextension/package.json"]

It will copy the NPM package in the Python package and force it to be copied in a place JupyterLab is looking for frontend extensions when the Python package is installed:

# setup.py#L26-L26

("share/jupyter/labextensions/%s" % labext_name, str(lab_path.relative_to(HERE)), "**"),

The last piece of configuration needed is the enabling of the server extension. This is done by copying the following JSON file:

// jupyter-config/server-config/jlab_ext_example.json

{
  "ServerApp": {
    "jpserver_extensions": {
      "jlab_ext_example": true
    }
  }
}

in the appropriate jupyter folder (etc/jupyter/jupyter_server_config.d):

# setup.py#L28-L29

("etc/jupyter/jupyter_server_config.d",
 "jupyter-config/server-config", "jlab_ext_example.json"),

For backward compatibility with the classical notebook, the old version of that file is copied in (etc/jupyter/jupyter_notebook_config.d):

# setup.py#L31-L32

("etc/jupyter/jupyter_notebook_config.d",
 "jupyter-config/nb-config", "jlab_ext_example.json"),

JupyterLab Extension Manager

The distribution as a Python package has been described in the previous subsection. But in JupyterLab, users have an extension manager at their disposal to find extensions. If, like in this example, your extension needs a server extension, you should inform the user about that dependency by adding the discovery metadata to your package.json file:

// package.json#L74-L84

"jupyterlab": {
  "discovery": {
    "server": {
      "managers": [
        "pip"
      ],
      "base": {
        "name": "jlab_ext_example"
      }
    }
  },

In this example, the extension requires a server extension:

// package.json#L75-L75

"discovery": {

And that server extension is available through pip:

// package.json#L76-L78

"server": {
  "managers": [
    "pip"

For more information on the discovery metadata, please refer to the documentation.

Installing the Package

With the packaging described above, installing the extension is done in one command once the package is published on pypi.org:

# Install the server extension and
# copy the frontend extension where JupyterLab can find it
pip install jlab_ext_example

As developer, you might want to install the package in local editable mode. This will shunt the installation machinery described above. Therefore the commands to get you set are:

# Install package in development mode
pip install -e .
# Link your development version of the extension with JupyterLab
jupyter labextension develop . --overwrite
# Enable the server extension
jupyter server extension enable jlab_ext_example
# Rebuild extension Typescript source after making changes
jlpm run build

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

jlab_ext_example-0.1.0.tar.gz (44.9 kB view details)

Uploaded Source

Built Distribution

jlab_ext_example-0.1.0-py3-none-any.whl (78.7 kB view details)

Uploaded Python 3

File details

Details for the file jlab_ext_example-0.1.0.tar.gz.

File metadata

  • Download URL: jlab_ext_example-0.1.0.tar.gz
  • Upload date:
  • Size: 44.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.6

File hashes

Hashes for jlab_ext_example-0.1.0.tar.gz
Algorithm Hash digest
SHA256 a67fd680744ab43d5bd5335acb6b5e5ca69971b5872c2a0ce8a21a9be8de8daa
MD5 e02b8c4f266c33471ee9b1ecac486cc5
BLAKE2b-256 e05f9433f26a77d4114b12ffdbe771de6ab1c3606979304635eb323a04d80992

See more details on using hashes here.

File details

Details for the file jlab_ext_example-0.1.0-py3-none-any.whl.

File metadata

File hashes

Hashes for jlab_ext_example-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 b22d39cb67b570ad13c1112d26bd68ba752fe53e0d8c9613fb3344c566627403
MD5 579fdb7d68ba8204d76c9400c1bf4237
BLAKE2b-256 781c97e7f06f74dff2f34989fb5513140c4af42bd8d1a311bdcb9ab8411ef336

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page