Skip to main content

Initialize jmesflat package

Project description

jmesflat

Built upon and considered an extension of jmespath, jmesflat is similarly pronounced (say "James flat") and provides a simple interface for flattening, 'unflattening', and merging deeply nested json objects.

Common use cases:

>>> # 1. Building deeply nested objects without constructing individual layers:
>>> import jmesflat as jf
>>> nest1 = jf.unflatten({"a.b[0].c[0].d": "e", "a.b[1].f": "g"})
>>> nest1
{'a': {'b': [{'c': [{'d': 'e'}]}, {'f': 'g'}]}}
>>>
>>> # 2. Merging deeply nested objects:
>>> nest2 = {"a": {"b": [{"f": "g"}, {"c": [{"d": "e"}]}]}}
>>> merged_nest = jf.merge(nest1, nest2)
>>> merged_nest
{'a': {'b': [{'c': [{'d': 'e'}], 'f': 'g'}, {'c': [{'d': 'e'}], 'f': 'g'}]}}
>>>
>>> # 3. Making dumps of complex nest objects compact and human readable
>>> import json
>>> print(json.dumps(jf.flatten(merged_nest), indent=2))
{
  "a.b[0].c[0].d": "e",
  "a.b[0].f": "g",
  "a.b[1].c[0].d": "e",
  "a.b[1].f": "g"
}

Installation

pip install jmesflat

Compatibility

Python 3.9 or greater

Basic Features Demo

  1. Keys can contain spaces and reserved characters (@ and -)
  2. Supports any arbitrary nesting pattern including mixed and multi-level array objects
  3. Empty lists / dicts are considered atomic types and included in the flattened output alongside the 'true' atomic types int, float, str, bool, and None
  4. Flatten / unflatten / merge at an arbitrary object depth using the level parameter (depth cannot exceed the depth of the first array instance)
  5. Extend rather than overwrite arrays during merge operations using the array_merge parameter. 'topdown' merges extend at the first array instance. 'bottomup' extends at the final array instance.
  6. Scrub the data during flatten/unflatten/merge operations or simply scrub a nested object via clean using the discard_check parameter. The check is ONLY applied to nest2 during the merge operation.
>>> import json
>>> import jmesflat as jf
>>>
>>> test_nest = {
...     "Outer Object Key 1": {
...         "mixedArray": [
...             "mixed array string",
...             {"mixed Array Object 1 Key": "spaces demo"},
...             12345,
...             [
...                 {"@subArray": "@ symbol demo"},
...                 {"@subArray": 1.2345},
...                 {"@subArray": None},
...             ],
...             {"mixed-array-object-2-key": "dashed key demo"},
...             [],
...             {},
...         ],
...     },
...     "Outer Object Key 2": {
...         "deepNest": {
...             "a": [
...                 {"b": 1},
...                 {
...                     "c": {
...                         "d": [
...                             {"e": "f", "g": "h"},
...                             {"e": "f1"}
...                         ]
...                     }
...                 }
...             ]
...         },
...     },
... }
>>>
>>> flat = jf.flatten(test_nest, level=1)
>>> print(json.dumps(flat, indent=2))
{
  "Outer Object Key 1": {
    "mixedArray[0]": "mixed array string",
    "mixedArray[1].mixed Array Object 1 Key": "spaces demo",
    "mixedArray[2]": 12345,
    "mixedArray[3][0].@subArray": "@ symbol demo",
    "mixedArray[3][1].@subArray": "@ symbol demo",
    "mixedArray[3][2].@subArray": "@ symbol demo",
    "mixedArray[4].mixed-array-object-2-key": "dashed key demo",
    "mixedArray[5]": [],
    "mixedArray[6]": {}
  },
  "Outer Object Key 2": {
    "deepNest.a[0].b": 1,
    "deepNest.a[1].c.d[0].e": "f",
    "deepNest.a[1].c.d[0].g": "h",
    "deepNest.a[1].c.d[1].e": "f1"
  }
}
>>>
>>> jf.unflatten(flat, level=1) == test_nest
True
>>>
>>> from copy import deepcopy
>>> test_nest2 = deepcopy(test_nest)
>>> # NOTE: `jf.flatten` wrapper is used for ease of visualization only in the merge/clean examples below
>>> print(json.dumps(jf.flatten(jf.merge(test_nest, test_nest2, level=1), level=2), indent=2))
{
  "Outer Object Key 1": {
    "mixedArray": {
      "[0]": "mixed array string",
      "[1].mixed Array Object 1 Key": "spaces demo",
      "[2]": 12345,
      "[3][0].@subArray": "@ symbol demo",
      "[3][1].@subArray": 1.2345,
      "[3][2].@subArray": null,
      "[4].mixed-array-object-2-key": "dashed key demo",
      "[5]": [],
      "[6]": {}
    }
  },
  "Outer Object Key 2": {
    "deepNest": {
      "a[0].b": 1,
      "a[1].c.d[0].e": "f",
      "a[1].c.d[0].g": "h",
      "a[1].c.d[1].e": "f1"
    }
  }
}
>>> print(json.dumps(jf.flatten(jf.merge(test_nest, test_nest2, level=1, array_merge="topdown"), level=2), indent=2))
{
  "Outer Object Key 1": {
    "mixedArray": {
      "[0]": "mixed array string",
      "[1].mixed Array Object 1 Key": "spaces demo",
      "[2]": 12345,
      "[3][0].@subArray": "@ symbol demo",
      "[3][1].@subArray": 1.2345,
      "[3][2].@subArray": null,
      "[4].mixed-array-object-2-key": "dashed key demo",
      "[5]": [],
      "[6]": {},
      "[7]": "mixed array string",
      "[8].mixed Array Object 1 Key": "spaces demo",
      "[9]": 12345,
      "[10][0].@subArray": "@ symbol demo",
      "[10][1].@subArray": 1.2345,
      "[10][2].@subArray": null,
      "[11].mixed-array-object-2-key": "dashed key demo",
      "[12]": [],
      "[13]": {}
    }
  },
  "Outer Object Key 2": {
    "deepNest": {
      "a[0].b": 1,
      "a[1].c.d[0].e": "f",
      "a[1].c.d[0].g": "h",
      "a[1].c.d[1].e": "f1",
      "a[2].b": 1,
      "a[3].c.d[0].e": "f",
      "a[3].c.d[0].g": "h",
      "a[3].c.d[1].e": "f1"
    }
  }
}
>>> print(json.dumps(jf.flatten(jf.merge(test_nest, test_nest2, level=1, array_merge="bottomup"), level=2), indent=2))
{
  "Outer Object Key 1": {
    "mixedArray": {
      "[0]": "mixed array string",
      "[1].mixed Array Object 1 Key": "spaces demo",
      "[2]": 12345,
      "[3][0].@subArray": "@ symbol demo",
      "[3][1].@subArray": 1.2345,
      "[3][2].@subArray": null,
      "[3][3].@subArray": "@ symbol demo",
      "[3][4].@subArray": 1.2345,
      "[3][5].@subArray": null,
      "[4].mixed-array-object-2-key": "dashed key demo",
      "[5]": [],
      "[6]": {},
      "[7]": "mixed array string",
      "[8].mixed Array Object 1 Key": "spaces demo",
      "[9]": 12345,
      "[10].mixed-array-object-2-key": "dashed key demo",
      "[11]": [],
      "[12]": {}
    }
  },
  "Outer Object Key 2": {
    "deepNest": {
      "a[0].b": 1,
      "a[1].c.d[0].e": "f",
      "a[1].c.d[0].g": "h",
      "a[1].c.d[1].e": "f1",
      "a[1].c.d[2].e": "f",
      "a[1].c.d[2].g": "h",
      "a[1].c.d[3].e": "f1",
      "a[2].b": 1
    }
  }
}
>>> print(json.dumps(jf.flatten(jf.clean(test_nest, discard_check=lambda key, val: "-" in key or not isinstance(val, (str, int))), level=2), indent=2))
{
  "Outer Object Key 1": {
    "mixedArray": {
      "[0]": "mixed array string",
      "[1].mixed Array Object 1 Key": "spaces demo",
      "[2]": 12345,
      "[3][0].@subArray": "@ symbol demo"
    }
  },
  "Outer Object Key 2": {
    "deepNest": {
      "a[0].b": 1,
      "a[1].c.d[0].e": "f",
      "a[1].c.d[0].g": "h",
      "a[1].c.d[1].e": "f1"
    }
  }
}

The constants Module

The constants module allows global defaults to be set for several key features. For example, a global discard check function can be defined by setting the value of jf.constants.DISCARD_CHECK. If the user wishes to discard all None type values, simply set jf.constants.DISCARD_CHECK = lambda _, val: val is None after the initial import jmesflat as jf statement. In addition, users can customize the default values that will be used when extending arrays during an index preserving unflatten operation via jf.MISSING_ARRAY_ENTRY_VALUE, a callable that accepts the flattened key of the array element being set and the value said is being set to and returns the value that should be used to pad the array until its length is >= the desired index. Other settings in the constants module are considered 'use at your own risk' and included for possible future extensibility.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

jmesflat-0.0.2.tar.gz (14.4 kB view details)

Uploaded Source

Built Distribution

jmesflat-0.0.2-py3-none-any.whl (11.7 kB view details)

Uploaded Python 3

File details

Details for the file jmesflat-0.0.2.tar.gz.

File metadata

  • Download URL: jmesflat-0.0.2.tar.gz
  • Upload date:
  • Size: 14.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: python-requests/2.32.3

File hashes

Hashes for jmesflat-0.0.2.tar.gz
Algorithm Hash digest
SHA256 10297dc5060501ff50b1b18d1b4a1e8b522b7c8b29f9cdd6c027be5f2f68fdfc
MD5 f7394d21d5fe77e5a9cc2119a656d574
BLAKE2b-256 406248cde36b900c43f735240c10fb0b81eaf2baa62ab737c7e70cc9e5cd1364

See more details on using hashes here.

File details

Details for the file jmesflat-0.0.2-py3-none-any.whl.

File metadata

  • Download URL: jmesflat-0.0.2-py3-none-any.whl
  • Upload date:
  • Size: 11.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: python-requests/2.32.3

File hashes

Hashes for jmesflat-0.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 933e95ae45f75767b981421e0b62cac94b4b5c383d1a6ba9b3ff5b041b61eb4e
MD5 4fd603881fdee939db37488054add5d3
BLAKE2b-256 456576aed320a7b019776cb7a9b3648619fe38d7f8867f0d6ad04bca46fe88d2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page