Skip to main content

Python version of the jMetal framework

Project description


CI PyPI Python version DOI PyPI License Code style: black

A paper introducing jMetalPy is available at:

Table of Contents


You can install the latest version of jMetalPy with pip,

pip install jmetalpy  # or "jmetalpy[distributed]"
Notes on installing with pip

jMetalPy includes features for parallel and distributed computing based on pySpark and Dask.

These (extra) dependencies are not automatically installed when running pip, which only comprises the core functionality of the framework (enough for most users):

pip install jmetalpy

This is the equivalent of running:

pip install "jmetalpy[core]"

Other supported commands are listed next:

pip install "jmetalpy[dev]"  # Install requirements for development
pip install "jmetalpy[distributed]"  # Install requirements for parallel/distributed computing
pip install "jmetalpy[complete]"  # Install all requirements

Hello, world! 👋

Examples of configuring and running all the included algorithms are located in the documentation.

from jmetal.algorithm.multiobjective import NSGAII
from jmetal.operator import SBXCrossover, PolynomialMutation
from jmetal.problem import ZDT1
from jmetal.util.termination_criterion import StoppingByEvaluations

problem = ZDT1()

algorithm = NSGAII(
    mutation=PolynomialMutation(probability=1.0 / problem.number_of_variables, distribution_index=20),
    crossover=SBXCrossover(probability=1.0, distribution_index=20),

We can then proceed to explore the results:

from jmetal.util.solution import get_non_dominated_solutions, print_function_values_to_file, \ 

front = get_non_dominated_solutions(algorithm.get_result())

# save to files
print_function_values_to_file(front, 'FUN.NSGAII.ZDT1')
print_variables_to_file(front, 'VAR.NSGAII.ZDT1')

Or visualize the Pareto front approximation produced by the algorithm:

from jmetal.lab.visualization import Plot

plot_front = Plot(title='Pareto front approximation', axis_labels=['x', 'y'])
plot_front.plot(front, label='NSGAII-ZDT1', filename='NSGAII-ZDT1', format='png')
Pareto front approximation


The current release of jMetalPy (v1.5.7) contains the following components:

  • Algorithms: local search, genetic algorithm, evolution strategy, simulated annealing, random search, NSGA-II, NSGA-III, SMPSO, OMOPSO, MOEA/D, MOEA/D-DRA, MOEA/D-IEpsilon, GDE3, SPEA2, HYPE, IBEA. Preference articulation-based algorithms (G-NSGA-II, G-GDE3, G-SPEA2, SMPSO/RP); Dynamic versions of NSGA-II, SMPSO, and GDE3.
  • Parallel computing based on Apache Spark and Dask.
  • Benchmark problems: ZDT1-6, DTLZ1-2, FDA, LZ09, LIR-CMOP, unconstrained (Kursawe, Fonseca, Schaffer, Viennet2), constrained (Srinivas, Tanaka).
  • Encodings: real, binary, permutations.
  • Operators: selection (binary tournament, ranking and crowding distance, random, nary random, best solution), crossover (single-point, SBX), mutation (bit-blip, polynomial, uniform, random).
  • Quality indicators: hypervolume, additive epsilon, GD, IGD.
  • Pareto front approximation plotting in real-time, static or interactive.
  • Experiment class for performing studies either alone or alongside jMetal.
  • Pairwise and multiple hypothesis testing for statistical analysis, including several frequentist and Bayesian testing methods, critical distance plots and posterior diagrams.
Scatter plot 2D Scatter plot 3D
Parallel coordinates Interactive chord plot


  • [v1.6.0] Refactor class Problem, the single-objective genetic algorithm can solve constrained problems, performance improvements in NSGA-II, generation of Latex tables summarizing the results of the Wilcoxon rank sum test, added a notebook folder with examples.
  • [v1.5.7] Use of linters for catching errors and formatters to fix style, minor bug fixes.
  • [v1.5.6] Removed warnings when using Python 3.8.
  • [v1.5.5] Minor bug fixes.
  • [v1.5.4] Refactored quality indicators to accept numpy array as input parameter.
  • [v1.5.4] Added CompositeSolution class to support mixed combinatorial problems. #69


This project is licensed under the terms of the MIT - see the LICENSE file for details.

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

jmetalpy-1.6.0.tar.gz (121.3 kB view hashes)

Uploaded Source

Built Distribution

jmetalpy-1.6.0-py2.py3-none-any.whl (205.8 kB view hashes)

Uploaded Python 2 Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page