Skip to main content

A collection of our functions and classes from bootcamp.

Project description

JMI_MVM

  • A collection of tools created for botcmap.
  • More information to be added later.

Table of Contents

    name = "JMI_MVM"
    help_ = " Recommended Functions to try: \n calc_roc_auc & tune_params\n plot_hist_scat_sns & multiplot\n list2df & df_drop_regex\n plot_wide_kde_thin_bar & make_violinplot\n"
    #functions.py
    
    import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    import matplotlib as mpl
    import seaborn as sns
    
    
    def calc_roc_auc(X_test,y_test,dtc,verbose=False):
        """Tests the results of an already-fit classifer. 
        Takes X_test, y_test, classifer, verbose (True" print result)
        Returns the AUC for the roc_curve as a %"""
        y_pred = dtc.predict(X_test)
    
        FP_rate, TP_rate, thresh = roc_curve(y_test,y_pred)
        roc_auc = auc(FP_rate,TP_rate)
        roc_auc_perc = round(roc_auc*100,3)
        # Your code here 
        if verbose:
            print(f"roc_curve's auc = {roc_auc_perc}%")
        return roc_auc_perc
    
    def tune_params(param_name, param_values):
        """Takes in param_name to tune with param_values, plots train vs test AUC's. 
        Returns df_results and df_style with color coded results"""
        res_list = [[param_name,'train_roc_auc','test_roc_auc']]
    
        # Loop through all values in param_values
        for value in param_values:
            # Create Model, set params
            dtc_temp = DecisionTreeClassifier(criterion='entropy')
            params={param_name:value}
            dtc_temp.set_params(**params)
    
            # Fit model
            dtc_temp.fit(X_train, y_train)
    
            # Get roc_auc for training data
            train_roc_auc = calc_roc_auc(X_train,y_train,dtc_temp)
            # Get roc_auc for test data
            test_res_roc_auc = calc_roc_auc(X_test,y_test,dtc_temp)
            # Append value and results to res_list
            res_list.append([value,train_roc_auc,test_res_roc_auc])
    
        # Turn results into df_results (basically same as using list2df)
        df_results = pd.DataFrame(res_list[1:],columns=res_list[0])
        df_results.set_index(param_name,inplace=True)
    
        # Plot df_results
        df_results.plot()
    
        # Color-coded dataframe s
        import seaborn as sns
        cm = sns.light_palette("green", as_cmap=True)
        df_syle = df_results.style.background_gradient(cmap=cm)#,low=results.min(),high=results.max())
    
        return df_results, df_syle
    
    
    # MULTIPLOT
    from string import ascii_letters
    import numpy as np
    import pandas as pd
    import seaborn as sns
    import matplotlib.pyplot as plt
    
    
    def multiplot(df):
        """Plots results from df.corr() in a correlation heat map for multicollinearity.
        Returns fig, ax objects"""
        sns.set(style="white")
    
        # Compute the correlation matrix
        corr = df.corr()
    
        # Generate a mask for the upper triangle
        mask = np.zeros_like(corr, dtype=np.bool)
        mask[np.triu_indices_from(mask)] = True
    
        # Set up the matplotlib figure
        f, ax = plt.subplots(figsize=(16, 16))
    
        # Generate a custom diverging colormap
        cmap = sns.diverging_palette(220, 10, as_cmap=True)
    
        # Draw the heatmap with the mask and correct aspect ratio
        sns.heatmap(corr, mask=mask, annot=True, cmap=cmap, center=0,
    
        square=True, linewidths=.5, cbar_kws={"shrink": .5})
        return f, ax
    
    
    
    # Plots histogram and scatter (vs price) side by side
    # Plots histogram and scatter (vs price) side by side
    def plot_hist_scat_sns(df, target='index'):
        """Plots seaborne distplots and regplots for columns im datamframe vs target.
    
        Parameters:
        df (DataFrame): DataFrame.describe() columns will be used. 
        target = name of column containing target variable.assume first coluumn. 
    
        Returns:
        Figures for each column vs target with 2 subplots.
       """
        import matplotlib.ticker as mtick
        import matplotlib.pyplot as plt
        import seaborn as sns
    
        with plt.style.context(('dark_background')):
            ###  DEFINE AESTHETIC CUSTOMIZATIONS  -------------------------------##
    
    
    #         plt.style.use('dark_background')
            figsize=(9,7)
    
            # Axis Label fonts
            fontTitle = {'fontsize': 14,
                       'fontweight': 'bold',
                        'fontfamily':'serif'}
    
            fontAxis = {'fontsize': 12,
                       'fontweight': 'medium',
                        'fontfamily':'serif'}
    
            fontTicks = {'fontsize': 8,
                       'fontweight':'medium',
                        'fontfamily':'serif'}
    
            # Formatting dollar sign labels
            fmtPrice = '${x:,.0f}'
            tickPrice = mtick.StrMethodFormatter(fmtPrice)
    
    
            ###  PLOTTING ----------------------------- ------------------------ ##
    
            # Loop through dataframe to plot
            for column in df.describe():
    #             print(f'\nCurrent column: {column}')
    
                # Create figure with subplots for current column
                fig, ax = plt.subplots(figsize=figsize, ncols=2, nrows=2)
    
                ##  SUBPLOT 1 --------------------------------------------------##
                i,j = 0,0
                ax[i,j].set_title(column.capitalize(),fontdict=fontTitle)
    
                # Define graphing keyword dictionaries for distplot (Subplot 1)
                hist_kws = {"linewidth": 1, "alpha": 1, "color": 'blue','edgecolor':'w'}
                kde_kws = {"color": "white", "linewidth": 1, "label": "KDE"}
    
                # Plot distplot on ax[i,j] using hist_kws and kde_kws
                sns.distplot(df[column], norm_hist=True, kde=True,
                             hist_kws = hist_kws, kde_kws = kde_kws,
                             label=column+' histogram', ax=ax[i,j])
    
    
                # Set x axis label
                ax[i,j].set_xlabel(column.title(),fontdict=fontAxis)
    
                # Get x-ticks, rotate labels, and return
                xticklab1 = ax[i,j].get_xticklabels(which = 'both')
                ax[i,j].set_xticklabels(labels=xticklab1, fontdict=fontTicks, rotation=0)
                ax[i,j].xaxis.set_major_formatter(mtick.ScalarFormatter())
    
    
                # Set y-label 
                ax[i,j].set_ylabel('Density',fontdict=fontAxis)
                yticklab1=ax[i,j].get_yticklabels(which='both')
                ax[i,j].set_yticklabels(labels=yticklab1,fontdict=fontTicks)
                ax[i,j].yaxis.set_major_formatter(mtick.ScalarFormatter())
    
    
                # Set y-grid
                ax[i, j].set_axisbelow(True)
                ax[i, j].grid(axis='y',ls='--')
    
    
    
    
                ##  SUBPLOT 2-------------------------------------------------- ##
                i,j = 0,1
                ax[i,j].set_title(column.capitalize(),fontdict=fontTitle)
    
                # Define the kwd dictionaries for scatter and regression line (subplot 2)
                line_kws={"color":"white","alpha":0.5,"lw":4,"ls":":"}
                scatter_kws={'s': 2, 'alpha': 0.5,'marker':'.','color':'blue'}
    
                # Plot regplot on ax[i,j] using line_kws and scatter_kws
                sns.regplot(df[column], df[target], 
                            line_kws = line_kws,
                            scatter_kws = scatter_kws,
                            ax=ax[i,j])
    
                # Set x-axis label
                ax[i,j].set_xlabel(column.title(),fontdict=fontAxis)
    
                 # Get x ticks, rotate labels, and return
                xticklab2=ax[i,j].get_xticklabels(which='both')
                ax[i,j].set_xticklabels(labels=xticklab2,fontdict=fontTicks, rotation=0)
                ax[i,j].xaxis.set_major_formatter(mtick.ScalarFormatter())
    
                # Set  y-axis label
                ax[i,j].set_ylabel(target,fontdict=fontAxis)
    
                # Get, set, and format y-axis Price labels
                yticklab = ax[i,j].get_yticklabels()
                ax[i,j].set_yticklabels(yticklab,fontdict=fontTicks)
                ax[i,j].yaxis.set_major_formatter(mtick.ScalarFormatter())
    
        #         ax[i,j].get_yaxis().set_major_formatter(tickPrice) 
    
                # Set y-grid
                ax[i, j].set_axisbelow(True)
                ax[i, j].grid(axis='y',ls='--')       
    
                ## ---------- Final layout adjustments ----------- ##
                # Deleted unused subplots 
                fig.delaxes(ax[1,1])
                fig.delaxes(ax[1,0])
    
                # Optimizing spatial layout
                fig.tight_layout()
                figtitle=column+'_dist_regr_plots.png'
    #             plt.savefig(figtitle)
        return 
    
    # Tukey's method using IQR to eliminate 
    def detect_outliers(df, n, features):
        """Uses Tukey's method to return outer of interquartile ranges to return indices if outliers in a dataframe.
        Parameters:
        df (DataFrame): DataFrane containing columns of features
        n: default is 0, multiple outlier cutoff  
    
        Returns:
        Index of outliers for .loc
    
        Examples:
        Outliers_to_drop = detect_outliers(data,2,["col1","col2"]) Returning value
        df.loc[Outliers_to_drop] # Show the outliers rows
        data= data.drop(Outliers_to_drop, axis = 0).reset_index(drop=True)
    """
    
    # Drop outliers    
    
        outlier_indices = []
        # iterate over features(columns)
        for col in features:
    
            # 1st quartile (25%)
            Q1 = np.percentile(df[col], 25)
            # 3rd quartile (75%)
            Q3 = np.percentile(df[col],75)
    
            # Interquartile range (IQR)
            IQR = Q3 - Q1
            # outlier step
            outlier_step = 1.5 * IQR
    
            # Determine a list of indices of outliers for feature col
            outlier_list_col = df[(df[col] < Q1 - outlier_step) | (df[col] > Q3 + outlier_step )].index
    
            # append the found outlier indices for col to the list of outlier indices 
            outlier_indices.extend(outlier_list_col)
    
            # select observations containing more than 2 outliers
            outlier_indices = Counter(outlier_indices)        
            multiple_outliers = list( k for k, v in outlier_indices.items() if v > n )
        return multiple_outliers 
    
    
    # describe_outliers -- calls detect_outliers
    def describe_outliers(df):
        """ Returns a new_df of outliers, and % outliers each col using detect_outliers.
        """
        out_count = 0
        new_df = pd.DataFrame(columns=['total_outliers', 'percent_total'])
        for col in df.columns:
            outies = detect_outliers(df[col])
            out_count += len(outies) 
            new_df.loc[col] = [len(outies), round((len(outies)/len(df.index))*100, 2)]
        new_df.loc['grand_total'] = [sum(new_df['total_outliers']), sum(new_df['percent_total'])]
        return new_df
    
    
    #### Cohen's d
    def Cohen_d(group1, group2):
        '''Compute Cohen's d.
        # group1: Series or NumPy array
        # group2: Series or NumPy array
        # returns a floating point number 
        '''
        diff = group1.mean() - group2.mean()
    
        n1, n2 = len(group1), len(group2)
        var1 = group1.var()
        var2 = group2.var()
    
        # Calculate the pooled threshold as shown earlier
        pooled_var = (n1 * var1 + n2 * var2) / (n1 + n2)
    
        # Calculate Cohen's d statistic
        d = diff / np.sqrt(pooled_var)
    
        return d
    
    
    def plot_pdfs(cohen_d=2):
        """Plot PDFs for distributions that differ by some number of stds.
    
        cohen_d: number of standard deviations between the means
        """
        group1 = scipy.stats.norm(0, 1)
        group2 = scipy.stats.norm(cohen_d, 1)
        xs, ys = evaluate_PDF(group1)
        pyplot.fill_between(xs, ys, label='Group1', color='#ff2289', alpha=0.7)
    
        xs, ys = evaluate_PDF(group2)
        pyplot.fill_between(xs, ys, label='Group2', color='#376cb0', alpha=0.7)
    
        o, s = overlap_superiority(group1, group2)
        print('overlap', o)
        print('superiority', s)
    
    def list2df(list):#, sort_values='index'):
        """ Take in a list where row[0] = column_names and outputs a dataframe.
    
        Keyword arguments:
        set_index -- df.set_index(set_index)
        sortby -- df.sorted()
        """    
    
        df_list = pd.DataFrame(list[1:],columns=list[0])
    #     df_list = df_list[1:]
    
        return df_list
    
    def df_drop_regex(DF, regex_list):
        '''Use a list of regex to remove columns names. Returns new df.
    
        Parameters:
            DF -- input dataframe to remove columns from.
            regex_list -- list of string patterns or regexp to remove.
    
        Returns:
            df_cut -- input df without the dropped columns. 
            '''
        df_cut = DF.copy()
    
        for r in regex_list:
    
            df_cut = df_cut[df_cut.columns.drop(list(df_cut.filter(regex=r)))]
            print(f'Removed {r}\n')
    
        return df_cut
    
    
    
    ####### MIKE's PLOTTING
    # plotting order totals per month in violin plots
    
    def make_violinplot(x,y, title=None, hue=None, ticklabels=None):
    
      '''Plots a violin plot with horizontal mean line, inner stick lines'''
    
      plt.style.use('dark_background')
      fig,ax =plt.subplots(figsize=(12,10))
    
    
      sns.violinplot(x, y,cut=2,split=True, scale='count', scale_hue=True,
                     saturation=.5, alpha=.9,bw=.25, palette='Dark2',inner='stick', hue=hue).set_title(title)
    
      ax.axhline(y.mean(),label='total mean', ls=':', alpha=.5, color='xkcd:yellow')
      ax.set_xticklabels(ticklabels)
    
      plt.legend()
      plt.show()
      x= df_year_orders['month']
      y= df_year_orders['order_total']
      title = 'Order totals per month with or without discounts'
      hue=df_year_orders['Discount']>0
    
    
    ### Example usage
    # #First, declare variables to be plotted
    # x = df_year_orders['month']
    # y = df_year_orders['order_total']
    # ticks = [v for v in month_dict.values()] 
    # title = 'Order totals per month with or without discounts'
    # hue = df_year_orders['Discount']>0
    
    ### Then call function
    # make_violinplot(x,y,title,hue, ticks), 
    
    
    ###########
    def plot_wide_kde_thin_bar(series1,sname1, series2, sname2):
        '''Plot series1 and series 2 on wide kde plot with small mean+sem bar plot.'''
    
        ## ADDING add_gridspec usage
        import pandas as pd
        import numpy as np
        from scipy.stats import sem
    
        import matplotlib.pyplot as plt
        import matplotlib as mpl
        import matplotlib.ticker as ticker
    
        import seaborn as sns
    
        from matplotlib import rcParams
        from matplotlib import rc
        rcParams['font.family'] = 'serif'
    
    
    
    
        # Plot distributions of discounted vs full price groups
        plt.style.use('default')
        # with plt.style.context(('tableau-colorblind10')):
        with plt.style.context(('seaborn-notebook')):
    
    
    
            ## ----------- DEFINE AESTHETIC CUSTOMIZATIONS ----------- ##
           # Axis Label fonts
            fontSuptitle ={'fontsize': 22,
                       'fontweight': 'bold',
                        'fontfamily':'serif'}
    
            fontTitle = {'fontsize': 10,
                       'fontweight': 'medium',
                        'fontfamily':'serif'}
    
            fontAxis = {'fontsize': 10,
                       'fontweight': 'medium',
                        'fontfamily':'serif'}
    
            fontTicks = {'fontsize': 8,
                       'fontweight':'medium', 
                        'fontfamily':'serif'}
    
    
            ## --------- CREATE FIG BASED ON GRIDSPEC --------- ##
    
            plt.suptitle('Quantity of Units Sold', fontdict = fontSuptitle)
    
            # Create fig object and declare figsize
            fig = plt.figure(constrained_layout=True, figsize=(8,3))
    
    
            # Define gridspec to create grid coordinates             
            gs = fig.add_gridspec(nrows=1,ncols=10)
    
            # Assign grid space to ax with add_subplot
            ax0 = fig.add_subplot(gs[0,0:7])
            ax1 = fig.add_subplot(gs[0,7:10])
    
            #Combine into 1 list
            ax = [ax0,ax1]
    
            ### ------------------  SUBPLOT 1  ------------------ ###
    
            ## --------- Defining series1 and 2 for subplot 1------- ##
            ax[0].set_title('Histogram + KDE',fontdict=fontTitle)
    
            # Group 1: data, label, hist_kws and kde_kws
            plotS1 = {'data': series1, 'label': sname1.title(),
    
                       'hist_kws' :
                        {'edgecolor': 'black', 'color':'darkgray','alpha': 0.8, 'lw':0.5},
    
                       'kde_kws':
                        {'color':'gray', 'linestyle': '--', 'linewidth':2,
                         'label':'kde'}}
    
            # Group 2: data, label, hist_kws and kde_kws
            plotS2 = {'data': series2,
                        'label': sname2.title(), 
    
                        'hist_kws' :
                        {'edgecolor': 'black','color':'green','alpha':0.8 ,'lw':0.5},
    
    
                        'kde_kws':
                        {'color':'darkgreen','linestyle':':','linewidth':3,'label':'kde'}}
    
            # plot group 1
            sns.distplot(plotS1['data'], label=plotS1['label'],
    
                         hist_kws = plotS1['hist_kws'], kde_kws = plotS1['kde_kws'],
    
                         ax=ax[0])   
    
    
            # plot group 2
            sns.distplot(plotS2['data'], label=plotS2['label'],
    
                         hist_kws=plotS2['hist_kws'], kde_kws = plotS2['kde_kws'],
    
                         ax=ax[0])
    
    
            ax[0].set_xlabel(series1.name, fontdict=fontAxis)
            ax[0].set_ylabel('Kernel Density Estimation',fontdict=fontAxis)
    
            ax[0].tick_params(axis='both',labelsize=fontTicks['fontsize'])   
            ax[0].legend()
    
    
            ### ------------------  SUBPLOT 2  ------------------ ###
    
            # Import scipy for error bars
            from scipy.stats import sem
    
            # Declare x y group labels(x) and bar heights(y)
            x = [plotS1['label'], plotS2['label']]
            y = [np.mean(plotS1['data']), np.mean(plotS2['data'])]
    
            yerr = [sem(plotS1['data']), sem(plotS2['data'])]
            err_kws = {'ecolor':'black','capsize':5,'capthick':1,'elinewidth':1}
    
            # Create the bar plot
            ax[1].bar(x,y,align='center', edgecolor='black', yerr=yerr,error_kw=err_kws,width=0.6)
    
    
            # Customize subplot 2
            ax[1].set_title('Average Quantities Sold',fontdict=fontTitle)
            ax[1].set_ylabel('Mean +/- SEM ',fontdict=fontAxis)
            ax[1].set_xlabel('')
    
            ax[1].tick_params(axis=y,labelsize=fontTicks['fontsize'])
            ax[1].tick_params(axis=x,labelsize=fontTicks['fontsize']) 
    
            ax1=ax[1]
            test = ax1.get_xticklabels()
            labels = [x.get_text() for x in test]
            ax1.set_xticklabels([plotS1['label'],plotS2['label']], rotation=45,ha='center')
    
    #         xlab = [x.get_text() for x in xlablist]
    #         ax[1].set_xticklabels(xlab,rotation=45)
    
    #         fig.savefig('H1_EDA_using_gridspec.png')
    #         plt.tight_layout()
        #     print(f')
            plt.show()
    
            return fig,ax
    
    
    
              

    Project details


    Download files

    Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

    Source Distribution

    JMI_MVM-0.3.4.tar.gz (41.5 kB view details)

    Uploaded Source

    Built Distribution

    JMI_MVM-0.3.4-py3-none-any.whl (65.6 kB view details)

    Uploaded Python 3

    File details

    Details for the file JMI_MVM-0.3.4.tar.gz.

    File metadata

    • Download URL: JMI_MVM-0.3.4.tar.gz
    • Upload date:
    • Size: 41.5 kB
    • Tags: Source
    • Uploaded using Trusted Publishing? No
    • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.2

    File hashes

    Hashes for JMI_MVM-0.3.4.tar.gz
    Algorithm Hash digest
    SHA256 5e819eb0e64a7294e90f27b8c9d21e142ca11b3202402a1016155cec37c3f4dc
    MD5 add6261816be7d1396c08729e51554ca
    BLAKE2b-256 2c8193d0dcde8641c7785f13d50de7ad1117ebf74856ad41f2790e6b31e80883

    See more details on using hashes here.

    File details

    Details for the file JMI_MVM-0.3.4-py3-none-any.whl.

    File metadata

    • Download URL: JMI_MVM-0.3.4-py3-none-any.whl
    • Upload date:
    • Size: 65.6 kB
    • Tags: Python 3
    • Uploaded using Trusted Publishing? No
    • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.2

    File hashes

    Hashes for JMI_MVM-0.3.4-py3-none-any.whl
    Algorithm Hash digest
    SHA256 9393deadb243a2bb736f6b76e5ccc9d4ee0f666b4881e5434a4c5dd9e80eea6e
    MD5 e7b9e1a78b3f1e744867e66f8646e072
    BLAKE2b-256 dfe6e365eb6d6862394911cd8f7b7234a2e80ebf64bb0ce54bf37d5a71bee7d6

    See more details on using hashes here.

    Supported by

    AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page