Skip to main content

jobflow is a library for writing computational workflows

Project description

jobflow

tests code coverage pypi version supported python versions DOI

Documentation | PyPI | GitHub | Paper

Jobflow is a free, open-source library for writing and executing workflows. Complex workflows can be defined using simple python functions and executed locally or on arbitrary computing resources using the FireWorks workflow manager.

Some features that distinguish jobflow are dynamic workflows, easy compositing and connecting of workflows, and the ability to store workflow outputs across multiple databases.

Is jobflow for me

jobflow is intended to be a friendly workflow software that is easy to get started with, but flexible enough to handle complicated use cases.

Some of its features include:

  • A clean and flexible Python API.
  • A powerful approach to compositing and connecting workflows — information passing between jobs is a key goal of jobflow. Workflows can be nested allowing for a natural way to build complex workflows.
  • Integration with multiple databases (MongoDB, S3, GridFS, and more) through the Maggma package.
  • Support for the FireWorks workflow management system, allowing workflow execution on multicore machines or through a queue, on a single machine or multiple machines.
  • Support for dynamic workflows — workflows that modify themselves or create new ones based on what happens during execution.

Workflow model

Workflows in jobflows are made up of two main components:

  • A Job is an atomic computing job. Essentially any python function can be Job, provided its input and return values can be serialized to json. Anything returned by the job is considered an "output" and is stored in the jobflow database.
  • A Flow is a collection of Job objects or other Flow objects. The connectivity between jobs is determined automatically from the job inputs. The execution order of jobs is automatically determined based on their connectivity.

Python functions can be easily converted in to Job objects using the @job decorator. In the example below, we define a job to add two numbers.

from jobflow import job, Flow

@job
def add(a, b):
    return a + b

add_first = add(1, 5)
add_second = add(add_first.output, 5)

flow = Flow([add_first, add_second])
flow.draw_graph().show()

The output of the job is accessed using the output attribute. As the job has not yet been run, output contains be a reference to a future output. Outputs can be used as inputs to other jobs and will be automatically "resolved" before the job is executed.

Finally, we created a flow using the two Job objects. The connectivity between the jobs is determined automatically and can be visualised using the flow graph.

simple flow graph

Installation

jobflow is a Python 3.9+ library and can be installed using pip.

pip install jobflow

Quickstart and tutorials

To get a first glimpse of jobflow, we suggest that you follow our quickstart tutorial. Later tutorials delve into the advanced features of jobflow.

Need help?

Ask questions about jobflow on the jobflow support forum. If you've found an issue with jobflow, please submit a bug report on GitHub Issues.

What’s new?

Track changes to jobflow through the changelog.

Contributing

We greatly appreciate any contributions in the form of a pull request. Additional information on contributing to jobflow can be found here. We maintain a list of all contributors here.

License

jobflow is released under a modified BSD license; the full text can be found here.

Citation

If you use Jobflow in your work, please cite it as follows:

  • "Jobflow: Computational Workflows Made Simple", A.S. Rosen, M. Gallant, J. George, J. Riebesell, H. Sahasrabuddhe, J.X. Shen, M. Wen, M.L. Evans, G. Petretto, D. Waroquiers, G.‑M. Rignanese, K.A. Persson, A. Jain, A.M. Ganose, Journal of Open Source Software, 9(93), 5995 (2024) DOI: 10.21105/joss.05995

Acknowledgements

Jobflow was designed by Alex Ganose, Anubhav Jain, Gian-Marco Rignanese, David Waroquiers, and Guido Petretto. Alex Ganose implemented the first version of the package. Later versions have benefited from the contributions of several research groups. A full list of contributors is available here.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

jobflow-0.1.17.tar.gz (53.6 kB view details)

Uploaded Source

Built Distribution

jobflow-0.1.17-py3-none-any.whl (56.9 kB view details)

Uploaded Python 3

File details

Details for the file jobflow-0.1.17.tar.gz.

File metadata

  • Download URL: jobflow-0.1.17.tar.gz
  • Upload date:
  • Size: 53.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for jobflow-0.1.17.tar.gz
Algorithm Hash digest
SHA256 e7a8590c078f3e6d686fca0ec3e1af711a606aa260d603433270433ba87009ee
MD5 851ec8ac8434aa2579fda8600fb1c6b4
BLAKE2b-256 dd5b9fdb8f483505170a6ddda94afc550e8539edbaa81d728f6772743b52cc3f

See more details on using hashes here.

File details

Details for the file jobflow-0.1.17-py3-none-any.whl.

File metadata

  • Download URL: jobflow-0.1.17-py3-none-any.whl
  • Upload date:
  • Size: 56.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for jobflow-0.1.17-py3-none-any.whl
Algorithm Hash digest
SHA256 a2ba5048a8bc0285b977c614f749c706dcad72bf3039901a84c928134d627de1
MD5 4d45260f50aeb526eb5d65e884218adb
BLAKE2b-256 f3b90fbf90e1d7bcfd9273b87ac3be4c7ef467521f2c33a82f7b35a0e7b9634a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page