Skip to main content

The package provides an interface for working with the https://jointml.ru/ platform.

Project description

Joint-ml

Данный пакет помогает реализовать удобный интрерфейс для использования вашей модели в федеративном обучении на нашей платформе.

Установка

Устанавливаем joint-ml с помощью pip:

pip install jointml-client

Создание клиента

Требования

Для установки и запуска проекта, необходим Python>=3.8.0

Шаг 1: Создаем модуль

Создайте python файл, который называется "client_methods.py" в корневом каталоге вашего git репозитория:

client_methods.py

Шаг 2: В файле client_methods.py необходимо реализовать методы: load_model, get_dataset, train, test:

Метод 1: load_model:

Метод для генерации модели.
На вход будут подаваться параметры, указанные на сервисе как Init Parameters. Обязательные параметры, которые необходимо учитывать разработчику ML:
init_parameters - параметры, которые разработчик ML указывает на сайте в разделе Init Parameters
Возвращает: (nn.Module) - модель.

def load_model(n_features, hidden_dim) -> nn.Module:
    model = Net(n_features, hidden_dim)
    return model

Метод 2: get_dataset:

Метод для чтения, предобработки и разбития датасета(with_split=True).
На вход будут подаваться dataset_path, with_split, а также параметры, которые разработчик ML укажет в коде как необходимые(специфические для каждого отдельного пользователя) Тут описывается вся логика предобработки датасета. Обязательные параметры, которые необходимо учитывать разработчику ML:

  • dataset_path(str) - путь до csv-файла с датасетом;
  • with_split(bool) - булева переменная, говорящая о необходимости разбития датасета на выборки(train, valid, test). Если True, тогда следует после предобработки данных разбить их на одну из следующих выборок - (train, test), (train, valid, test). Если False, тогда требуется лишь предобработка данных и возвращение лишь подготовленного датасета ( в дальнейшем будет использоваться для получения предсказаний модели на данных пользователя).

Возвращает один из следующих кортежей:

  • (torch.utils.data.Dataset, torch.utils.data.Dataset, torch.utils.data.Dataset) - возвращается при with_split=True. В будущем используется как train_set, valid_set и test_set
  • (torch.utils.data.Dataset, torch.utils.data.Dataset) - возвращается при with_split=True. В будущем используется как train_set и test_set
  • (torch.utils.data.Dataset) - возвращается при with_split=False. В будущем используется как test_set(выборка для тестирования модели на весах)
def get_dataset(dataset_path: str, with_split: bool, test_size: float, shuffle: bool) -> Union[
    Tuple[torch.utils.data.Dataset, torch.utils.data.Dataset, torch.utils.data.Dataset],
    Tuple[torch.utils.data.Dataset, torch.utils.data.Dataset], Tuple[torch.utils.data.Dataset]]:
    transactions, labels = load_dataset(dataset_path)
    if with_split:
        x_train, x_test, y_train, y_test = train_test_split(transactions, labels, test_size=test_size, shuffle=shuffle)
        x_train, x_test = preprocess_data(x_train, x_test)

        train_set = TransactionsDataset(x_train, y_train)
        test_set = TransactionsDataset(x_test, y_test)

        return train_set, test_set
    else:
        x_test = preprocess_set(transactions)
        test_set = TransactionsDataset(x_test, labels)
        return test_set

Метод 3: train:

Метод для тренировки модели, полученной из метода load_model.
На вход будут подаваться: модель, сгенерированная методом load_model, train_set полученный из метода get_dataset, valid_set(опционально) полученный из метода get_dataset(если возврат выборки предусмотрен разработчиком ML в методе get_dataset), а также параметры, которые разработчик ML укажет в коде как необходимые(специфические для каждого отдельного пользователя).
Обязательные параметры, которые необходимо учитывать разработчику ML:

  • model(nn.Module) - модель, полученная из метода load_model;
  • train_set(torch.utils.data.Dataset) - тренировочная выборка, полученная из метода get_dataset;
  • valid_set(torch.utils.data.Dataset) - валидационная выборка, полученная из метода get_dataset; Подается на вход только если в методе
  • get_dataset предусмотрено получение валидационной выборки и ее возврата;
  • train_parameters - параметры, которые разработчик ML указывает на сайте в разделе Train Parameters.

Возвращает (List[Metric], nn.Module) - кортеж состоящий из:
1. Список метрик полученных в ходе обучения;
2. Обученной модели.

def get_dataset(dataset_path: str, with_split: bool, test_size: float, shuffle: bool) -> Union[
    Tuple[torch.utils.data.Dataset, torch.utils.data.Dataset, torch.utils.data.Dataset],
    Tuple[torch.utils.data.Dataset, torch.utils.data.Dataset], Tuple[torch.utils.data.Dataset]]:
    transactions, labels = load_dataset(dataset_path)
    if with_split:
        x_train, x_test, y_train, y_test = train_test_split(transactions, labels, test_size=test_size, shuffle=shuffle)
        x_train, x_test = preprocess_data(x_train, x_test)

        train_set = TransactionsDataset(x_train, y_train)
        test_set = TransactionsDataset(x_test, y_test)

        return train_set, test_set
    else:
        x_test = preprocess_set(transactions)
        test_set = TransactionsDataset(x_test, labels)
        return test_set

Метод 4: test:

Метод для тестирования модели на данных.
На вход подается model, полученная из load_model; return_output и булева переменная, говорящая о необходимости возврата выхода из модели на данных; test_set - тестировочная выборка, полученная из get_dataset, а также параметры, которые разработчик ML укажет в коде как необходимые(специфические для каждого отдельного пользователя). Обязательные параметры, которые необходимо учитывать разработчику ML:

  • model(nn.Module) - модель, полученный из метода load_model
  • test_set(torch.utils.data.Dataset) - тестировочная выборка, полученная из метода get_dataset
  • return_output(bool) - булева переменная, говорящая о необходимости возвращать ответы модели
  • test_parameters - параметры, которые разработчик ML указывает на сайте в разделе Test Parameters

Возвращает один из следующих кортежей:

  • (List[Metric]) - метрики полученные в ходе тестирования модели на данных;
  • (List[Metric], list) - метрики и ответы модели полученные в ходе тестирования модели на данных(только если return_output=True).
def test(model: torch.nn.Module, test_set: torch.utils.data.Dataset, return_output: bool) -> Union[
    Tuple[List[Metric]], Tuple[List[Metric], list]]:
    test_loss = 0.0
    model.eval()
    loss_fn = BCELoss()

    test_dataloader = DataLoader(test_set)

    outputs = []
    labels = np.array([])

    for i, data in enumerate(test_dataloader):
        transactions, label = data['transaction'], data['label']

        transactions = transactions.reshape(transactions.shape[0], 1, transactions.shape[1])
        output = model(transactions)

        loss = loss_fn(output, label)

        test_loss += loss.item()

        outputs.append(output.cpu().detach().numpy().reshape(-1))
        labels = np.hstack([labels, label.cpu().reshape(-1)])

    test_loss /= len(test_dataloader)

    test_loss_metric = Metric(name="test_loss")
    test_loss_metric.log_value(test_loss)

    test_roc_auc_score = roc_auc_score(labels, np.array(outputs))

    test_roc_auc_score_metric = Metric(name="test_roc_auc_score")
    test_roc_auc_score_metric.log_value(test_roc_auc_score)


    if return_output:
        return ([test_loss_metric, test_roc_auc_score_metric], outputs)
    else:
        return ([test_loss_metric, test_roc_auc_score_metric])

Выкладываем код с реализованным классом Сlient в GitHub

Необходимо выложить готовый клиент в открытый GitHub репозиторий в ветку с именем master

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

jointml_client-0.1.93.tar.gz (8.3 kB view details)

Uploaded Source

Built Distribution

jointml_client-0.1.93-py3-none-any.whl (8.0 kB view details)

Uploaded Python 3

File details

Details for the file jointml_client-0.1.93.tar.gz.

File metadata

  • Download URL: jointml_client-0.1.93.tar.gz
  • Upload date:
  • Size: 8.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.3.2 CPython/3.10.6 Linux/6.2.0-33-generic

File hashes

Hashes for jointml_client-0.1.93.tar.gz
Algorithm Hash digest
SHA256 24c0fc9c49fb89027947c9e14341ac2a03533da845224fc7df6b23796dca2eaa
MD5 4f34a1c029c331b2f61faf86b4e8e2cd
BLAKE2b-256 8db9e7b2fa40d214d64493509ac339a2d0756e49f513888aaa15396725f14ec6

See more details on using hashes here.

File details

Details for the file jointml_client-0.1.93-py3-none-any.whl.

File metadata

  • Download URL: jointml_client-0.1.93-py3-none-any.whl
  • Upload date:
  • Size: 8.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.3.2 CPython/3.10.6 Linux/6.2.0-33-generic

File hashes

Hashes for jointml_client-0.1.93-py3-none-any.whl
Algorithm Hash digest
SHA256 0a59eedb69c175e19fd5b5c2ba758556abcc2be4b4286a6847d1f9e286148330
MD5 0667c6e658920a68c4b140fc8703fc4f
BLAKE2b-256 848eb4b1d778d37184e5fe8353665f77bc432b81d35715d2c590159cb5718b67

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page