Skip to main content

The package provides an interface for working with the https://jointml.ru/ platform.

Project description

Joint-ml

Данный пакет помогает реализовать удобный интрерфейс для использования вашей модели в федеративном обучении на нашей платформе.

Установка

Устанавливаем joint-ml с помощью pip:

pip install jointml-client

Создание клиента

Требования

Для установки и запуска проекта, необходим Python>=3.8.0

Шаг 1: Создаем модуль

Создайте python файл, который называется "client_methods.py" в корневом каталоге вашего git репозитория:

client_methods.py

Шаг 2: В файле client_methods.py необходимо реализовать методы: load_model, get_dataset, train, test:

Метод 1: load_model:

Метод для генерации модели.
На вход будут подаваться параметры, указанные на сервисе как Init Parameters. Обязательные параметры, которые необходимо учитывать разработчику ML:
init_parameters - параметры, которые разработчик ML указывает на сайте в разделе Init Parameters
Возвращает: (nn.Module) - модель.

def load_model(n_features, hidden_dim) -> nn.Module:
    model = Net(n_features, hidden_dim)
    return model

Метод 2: get_dataset:

Метод для чтения, предобработки и разбития датасета(with_split=True).
На вход будут подаваться dataset_path, with_split, а также параметры, которые разработчик ML укажет в коде как необходимые(специфические для каждого отдельного пользователя) Тут описывается вся логика предобработки датасета. Обязательные параметры, которые необходимо учитывать разработчику ML:

  • dataset_path(str) - путь до csv-файла с датасетом;
  • with_split(bool) - булева переменная, говорящая о необходимости разбития датасета на выборки(train, valid, test). Если True, тогда следует после предобработки данных разбить их на одну из следующих выборок - (train, test), (train, valid, test). Если False, тогда требуется лишь предобработка данных и возвращение лишь подготовленного датасета ( в дальнейшем будет использоваться для получения предсказаний модели на данных пользователя).

Возвращает один из следующих кортежей:

  • (torch.utils.data.Dataset, torch.utils.data.Dataset, torch.utils.data.Dataset) - возвращается при with_split=True. В будущем используется как train_set, valid_set и test_set
  • (torch.utils.data.Dataset, torch.utils.data.Dataset) - возвращается при with_split=True. В будущем используется как train_set и test_set
  • (torch.utils.data.Dataset) - возвращается при with_split=False. В будущем используется как test_set(выборка для тестирования модели на весах)
def get_dataset(dataset_path: str, with_split: bool, test_size: float, shuffle: bool) -> Union[
    Tuple[torch.utils.data.Dataset, torch.utils.data.Dataset, torch.utils.data.Dataset],
    Tuple[torch.utils.data.Dataset, torch.utils.data.Dataset], Tuple[torch.utils.data.Dataset]]:
    transactions, labels = load_dataset(dataset_path)
    if with_split:
        x_train, x_test, y_train, y_test = train_test_split(transactions, labels, test_size=test_size, shuffle=shuffle)
        x_train, x_test = preprocess_data(x_train, x_test)

        train_set = TransactionsDataset(x_train, y_train)
        test_set = TransactionsDataset(x_test, y_test)

        return train_set, test_set
    else:
        x_test = preprocess_set(transactions)
        test_set = TransactionsDataset(x_test, labels)
        return test_set

Метод 3: train:

Метод для тренировки модели, полученной из метода load_model.
На вход будут подаваться: модель, сгенерированная методом load_model, train_set полученный из метода get_dataset, valid_set(опционально) полученный из метода get_dataset(если возврат выборки предусмотрен разработчиком ML в методе get_dataset), а также параметры, которые разработчик ML укажет в коде как необходимые(специфические для каждого отдельного пользователя).
Обязательные параметры, которые необходимо учитывать разработчику ML:

  • model(nn.Module) - модель, полученная из метода load_model;
  • train_set(torch.utils.data.Dataset) - тренировочная выборка, полученная из метода get_dataset;
  • valid_set(torch.utils.data.Dataset) - валидационная выборка, полученная из метода get_dataset; Подается на вход только если в методе
  • get_dataset предусмотрено получение валидационной выборки и ее возврата;
  • train_parameters - параметры, которые разработчик ML указывает на сайте в разделе Train Parameters.

Возвращает (List[Metric], nn.Module) - кортеж состоящий из:
1. Список метрик полученных в ходе обучения;
2. Обученной модели.

def get_dataset(dataset_path: str, with_split: bool, test_size: float, shuffle: bool) -> Union[
    Tuple[torch.utils.data.Dataset, torch.utils.data.Dataset, torch.utils.data.Dataset],
    Tuple[torch.utils.data.Dataset, torch.utils.data.Dataset], Tuple[torch.utils.data.Dataset]]:
    transactions, labels = load_dataset(dataset_path)
    if with_split:
        x_train, x_test, y_train, y_test = train_test_split(transactions, labels, test_size=test_size, shuffle=shuffle)
        x_train, x_test = preprocess_data(x_train, x_test)

        train_set = TransactionsDataset(x_train, y_train)
        test_set = TransactionsDataset(x_test, y_test)

        return train_set, test_set
    else:
        x_test = preprocess_set(transactions)
        test_set = TransactionsDataset(x_test, labels)
        return test_set

Метод 4: test:

Метод для тестирования модели на данных.
На вход подается model, полученная из load_model; return_output и булева переменная, говорящая о необходимости возврата выхода из модели на данных; test_set - тестировочная выборка, полученная из get_dataset, а также параметры, которые разработчик ML укажет в коде как необходимые(специфические для каждого отдельного пользователя). Обязательные параметры, которые необходимо учитывать разработчику ML:

  • model(nn.Module) - модель, полученный из метода load_model
  • test_set(torch.utils.data.Dataset) - тестировочная выборка, полученная из метода get_dataset
  • return_output(bool) - булева переменная, говорящая о необходимости возвращать ответы модели
  • test_parameters - параметры, которые разработчик ML указывает на сайте в разделе Test Parameters

Возвращает один из следующих кортежей:

  • (List[Metric]) - метрики полученные в ходе тестирования модели на данных;
  • (List[Metric], list) - метрики и ответы модели полученные в ходе тестирования модели на данных(только если return_output=True).
def test(model: torch.nn.Module, test_set: torch.utils.data.Dataset, return_output: bool) -> Union[
    Tuple[List[Metric]], Tuple[List[Metric], list]]:
    test_loss = 0.0
    model.eval()
    loss_fn = BCELoss()

    test_dataloader = DataLoader(test_set)

    outputs = []
    labels = np.array([])

    for i, data in enumerate(test_dataloader):
        transactions, label = data['transaction'], data['label']

        transactions = transactions.reshape(transactions.shape[0], 1, transactions.shape[1])
        output = model(transactions)

        loss = loss_fn(output, label)

        test_loss += loss.item()

        outputs.append(output.cpu().detach().numpy().reshape(-1))
        labels = np.hstack([labels, label.cpu().reshape(-1)])

    test_loss /= len(test_dataloader)

    test_loss_metric = Metric(name="test_loss")
    test_loss_metric.log_value(test_loss)

    test_roc_auc_score = roc_auc_score(labels, np.array(outputs))

    test_roc_auc_score_metric = Metric(name="test_roc_auc_score")
    test_roc_auc_score_metric.log_value(test_roc_auc_score)


    if return_output:
        return ([test_loss_metric, test_roc_auc_score_metric], outputs)
    else:
        return ([test_loss_metric, test_roc_auc_score_metric])

Выкладываем код с реализованным классом Сlient в GitHub

Необходимо выложить готовый клиент в открытый GitHub репозиторий в ветку с именем master

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

jointml_client-0.1.97.tar.gz (9.0 kB view details)

Uploaded Source

Built Distribution

jointml_client-0.1.97-py3-none-any.whl (9.0 kB view details)

Uploaded Python 3

File details

Details for the file jointml_client-0.1.97.tar.gz.

File metadata

  • Download URL: jointml_client-0.1.97.tar.gz
  • Upload date:
  • Size: 9.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.3.2 CPython/3.10.6 Linux/6.2.0-33-generic

File hashes

Hashes for jointml_client-0.1.97.tar.gz
Algorithm Hash digest
SHA256 902a6b506685396883cd2786a6d702547f2f0c8e7530da7df1799e8444ff0b95
MD5 d1cc5bd3be3c8f736faf4885623611be
BLAKE2b-256 c7381ed52c95e476e62d7fdfa6f3e9f274672108885be934de6dbcd4f560cb8d

See more details on using hashes here.

File details

Details for the file jointml_client-0.1.97-py3-none-any.whl.

File metadata

  • Download URL: jointml_client-0.1.97-py3-none-any.whl
  • Upload date:
  • Size: 9.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.3.2 CPython/3.10.6 Linux/6.2.0-33-generic

File hashes

Hashes for jointml_client-0.1.97-py3-none-any.whl
Algorithm Hash digest
SHA256 beb92ed5f5b20e6c9c7bc6d3a27fc421ad5ddb45e3a72a65c43e7df79d836559
MD5 39ee47b84c25ce0e289bb705d0db2a83
BLAKE2b-256 71b84f42fff37b9e715008d554fa4fa0b1a82c9703bd0e2480b42fd031b9b0a4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page