A Library for Deep Reinforcement Learning
Project description
中文|EN
JoyRL
Install
conda create -n easyrl python=3.7
conda activate easyrl
pip install -r requirements
Torch:
# CPU
conda install pytorch==1.10.0 torchvision==0.11.0 torchaudio==0.10.0 cpuonly -c pytorch
# GPU
conda install pytorch==1.10.0 torchvision==0.11.0 torchaudio==0.10.0 cudatoolkit=11.3 -c pytorch -c conda-forge
# GPU with mirrors
pip install torch==1.10.0+cu113 torchvision==0.11.0+cu113 torchaudio==0.10.0 --extra-index-url https://download.pytorch.org/whl/cu113
Usage
you can simply change the parameters (like env_name, algo_name) in config.config.GeneralConfig()
and run:
python main.py
then it will a new folder named tasks
to save results and models.
Or you can custom parameters with a yaml
file as you can seen in config/custom_config_Train.yaml
and run:
python main.py --yaml config/custom_config_Train.yaml
And there are presets yaml files in the defaults folder and well trained results in the benchmarks folder.
Algorithms
Name | Reference | Author | Notes |
---|---|---|---|
DQN | DQN Paper | johnjim0816 |
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
joyrl-0.1.4.tar.gz
(2.9 kB
view hashes)
Built Distribution
joyrl-0.1.4-py3-none-any.whl
(4.7 kB
view hashes)