Skip to main content

jquants-algo is a python library for algorithmic trading with japanese stock trade using J-Quants on Python 3.8 and above.

Project description

jquants-algo

PyPI License: MIT codecov Python package PyPI - Python Version Downloads

jquants-algo is a python library for algorithmic trading with japanese stock trade using J-Quants on Python 3.8 and above.

Installation

$ pip install jquants-algo

Usage

backtest

from jquants_algo import Algo
import pprint

class MyAlgo(Algo):
    def strategy(self):
        fast_ma = self.sma(period=3)
        slow_ma = self.sma(period=5)
        # golden cross
        self.sell_exit = self.buy_entry = (fast_ma > slow_ma) & (
            fast_ma.shift() <= slow_ma.shift()
        )
        # dead cross
        self.buy_exit = self.sell_entry = (fast_ma < slow_ma) & (
            fast_ma.shift() >= slow_ma.shift()
        )

algo = MyAlgo(
    mail_address="<your J-Quants mail address>",
    password="<your J-Quants password>",
    ticker="7203",  # TOYOTA
    size=100,  # 100 shares
)
pprint.pprint(algo.backtest())

performance.png

{'long': {'average return': '0.156',
          'maximum drawdown': '49350.000',
          'profit': '11450.000',
          'profit factor': '1.080',
          'riskreward ratio': '1.455',
          'sharpe ratio': '0.038',
          'trades': '54.000',
          'win rate': '0.426'},
 'short': {'average return': '-0.207',
           'maximum drawdown': '39950.000',
           'profit': '-26420.000',
           'profit factor': '0.782',
           'riskreward ratio': '1.330',
           'sharpe ratio': '-0.079',
           'trades': '54.000',
           'win rate': '0.370'},
 'total': {'average return': '-0.026',
           'maximum drawdown': '79950.000',
           'profit': '-14970.000',
           'profit factor': '0.943',
           'riskreward ratio': '1.426',
           'sharpe ratio': '-0.008',
           'trades': '108.000',
           'win rate': '0.398'}}

predict

from jquants_algo import Algo
import pprint

class MyAlgo(Algo):
    def strategy(self):
        fast_ma = self.sma(period=3)
        slow_ma = self.sma(period=5)
        # golden cross
        self.sell_exit = self.buy_entry = (fast_ma > slow_ma) & (
            fast_ma.shift() <= slow_ma.shift()
        )
        # dead cross
        self.buy_exit = self.sell_entry = (fast_ma < slow_ma) & (
            fast_ma.shift() >= slow_ma.shift()
        )

algo = MyAlgo(
    mail_address="<your J-Quants mail address>",
    password="<your J-Quants password>",
    ticker="7203",  # TOYOTA
    size=100,  # 100 shares
)
pprint.pprint(algo.predict())
{'buy entry': False,
 'buy exit': False,
 'close': 2356.5,
 'date': '2023-08-21',
 'sell entry': False,
 'sell exit': False}

advanced

from jquants_algo import Algo
import pprint

class MyAlgo(Algo):
    def strategy(self):
        rsi = self.rsi(period=10)
        ema = self.ema(period=20)
        lower = ema - (ema * 0.001)
        upper = ema + (ema * 0.001)
        self.buy_entry = (rsi < 30) & (self.df.Close < lower)
        self.sell_entry = (rsi > 70) & (self.df.Close > upper)
        self.sell_exit = ema > self.df.Close
        self.buy_exit = ema < self.df.Close

algo = MyAlgo(
    mail_address="<your J-Quants mail address>",
    password="<your J-Quants password>",
    ticker="7203",  # TOYOTA
    size=100,  # 100 shares
    outputs_dir_path="outputs",
    data_dir_path="data",
)
pprint.pprint(algo.backtest())
pprint.pprint(algo.predict())

Supported indicators

  • Simple Moving Average 'sma'
  • Exponential Moving Average 'ema'
  • Moving Average Convergence Divergence 'macd'
  • Relative Strenght Index 'rsi'
  • Bollinger Bands 'bbands'
  • Market Momentum 'mom'
  • Stochastic Oscillator 'stoch'
  • Average True Range 'atr'

Getting started

For help getting started with J-Quants, view our online documentation.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

jquants-algo-0.1.0.tar.gz (7.3 kB view hashes)

Uploaded Source

Built Distribution

jquants_algo-0.1.0-py3-none-any.whl (6.8 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page