Skip to main content

jquants-ml is a python library for machine learning with japanese stock trade using J-Quants on Python 3.8 and above.

Project description

jquants-ml

PyPI License: MIT codecov Python package PyPI - Python Version Downloads

jquants-ml is a python library for machine learning with japanese stock trade using J-Quants on Python 3.8 and above.

Installation

$ pip install jquants-ml

Usage

basic backtest

from jquants_ml import Ml
import pprint

class MyMl(Ml):
    def features(self):
        self.X["close"] = self.df.Close
        self.X["ror"] = self.df.Close.pct_change(1)
        self.X["sma"] = self.sma(period=5)

ml = MyMl(
    mail_address="<your J-Quants mail address>",
    password="<your J-Quants password>",
    ticker="7203",  # TOYOTA
    size=100,  # 100 shares
)
pprint.pprint(ml.backtest())

7203.png

{'long': {'maximum drawdown': '17900.000',
          'profit': '28450.000',
          'profit factor': '1.160',
          'riskreward ratio': '1.137',
          'sharpe ratio': '0.056',
          'trades': '196.000',
          'win rate': '0.505'},
 'short': {'maximum drawdown': '73050.000',
           'profit': '-37700.000',
           'profit factor': '0.769',
           'riskreward ratio': '0.828',
           'sharpe ratio': '0.088',
           'trades': '108.000',
           'win rate': '0.481'},
 'total': {'maximum drawdown': '60950.000',
           'profit': '-9250.000',
           'profit factor': '0.973',
           'riskreward ratio': '0.986',
           'sharpe ratio': '0.069',
           'trades': '304.000',
           'win rate': '0.497'}}

basic predict

from jquants_ml import Ml
import pprint

class MyMl(Ml):
    def features(self):
        self.X["close"] = self.df.Close
        self.X["ror"] = self.df.Close.pct_change(1)
        self.X["sma"] = self.sma(period=5)

ml = MyMl(
    mail_address="<your J-Quants mail address>",
    password="<your J-Quants password>",
    ticker="7203",  # TOYOTA
    size=100,  # 100 shares
)
pprint.pprint(ml.predict())
{'Date': '2023-09-25', 'Price': 2761.5, 'Sign': 'short'}

advanced

from jquants_ml import Ml

class MyMl(Ml):
    # Awesome Oscillator
    def ao(self, *, fast_period: int = 5, slow_period: int = 34):
        return ((self.df.H + self.df.L) / 2).rolling(fast_period).mean() - (
            (self.df.H + self.df.L) / 2
        ).rolling(slow_period).mean()

    def features(self):
        self.X["ao"] = self.ao(fast_period=5, slow_period=34)
        self.X["close"] = self.df.Close
        self.X["ror"] = self.df.Close.pct_change(1)
        self.X["sma"] = self.sma(period=5)
        self.X["ema"] = self.ema(period=5)
        self.X["upper"], self.X["mid"], self.X["lower"] = self.bbands(
            period=20, band=2
        )
        self.X["macd"], self.X["signal"] = self.macd(
            fast_period=12, slow_period=26, signal_period=9
        )
        self.X["k"], self.X["d"] = self.stoch(k_period=5, d_period=3)
        self.X["rsi"] = self.rsi(period=14)
        self.X["atr"] = self.atr(period=14)
        self.X["mom"] = self.mom(period=10)

ml = MyMl(
    mail_address="<your J-Quants mail address>",
    password="<your J-Quants password>",
    ticker="7203",  # TOYOTA
    size=100,  # 100 shares
    outputs_dir_path="outputs",
    model_dir_path="model",
    data_dir_path="data",
)
pprint.pprint(ml.backtest())
pprint.pprint(ml.predict())

Supported indicators

  • Simple Moving Average 'sma'
  • Exponential Moving Average 'ema'
  • Moving Average Convergence Divergence 'macd'
  • Relative Strenght Index 'rsi'
  • Bollinger Bands 'bbands'
  • Market Momentum 'mom'
  • Stochastic Oscillator 'stoch'
  • Average True Range 'atr'

Getting started

For help getting started with J-Quants, view our online documentation.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

jquants-ml-0.1.2.tar.gz (6.9 kB view hashes)

Uploaded Source

Built Distribution

jquants_ml-0.1.2-py3-none-any.whl (6.8 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page