Skip to main content

Combines dataArrays with attributes for fitting plotting and analysis including models for Xray and neutron scattering

Project description

The aim of Jscatter is treatment of experimental data and models:

  • Reading and analyzing experimental data with associated attributes as temperature, wavevector, comment, ….

  • Multidimensional fitting taking attributes into account.

  • Providing useful models for neutron and X-ray scattering form factors, structure factors and dynamic models (quasi elastic neutron scattering) and other topics.

  • Simplified plotting with paper ready quality.

  • Easy model building for non programmers.

  • Python scripts/Jupyter Notebooks to document data evaluation and modelling.

Binder citation install license pyversion Read the Docs Beginners Guide

Jscatter Logo

Main concept

  • Data are organised in dataArray/dataList with attributes as .temperature, .wavevector, .pressure and methods for filter, merging and more.

  • Multidimensional, attribute dependent fitting (least square Levenberg-Marquardt, Bayesian fit, differential evolution, …).

  • Provide relative simple plotting commands to allow a fast view on data and possible later pretty up.

  • User write models using the existing model library or self created models.

    The model library contains routines e.g. for vectorized quadrature (formel) or specialised models for scattering as formfactor, structurefactor, dynamic and biomacromolecules.

Documentation

Documentation located at http://jscatter.readthedocs.io. A number of examples how to use Jscatter is provided and can be run from Jscatter.

A short example how to use Jscatter

import jscatter as js

i5=js.dL(js.examples.datapath+'/iqt_1hho.dat')     # read the data (16 sets) with attributes
# define a model for the fit
diffusion=lambda A,D,t,wavevector,elastic=0:A*np.exp(-wavevector**2*D*t)+elastic

# do the fit
i5.fit(model=diffusion,                     # the fit function
       freepar={'D':[0.08],'A':0.98},       # start parameters, "[]" -> independent fit
       fixpar={'elastic':0.0},              # fixed parameters
       mapNames={'t':'X','wavevector':'q'}) # map names from the model to names from the data

p=js.grace(1.2,0.8)                         # open a plot
p.plot(i5,symbol=[-1,0.4,-1],legend='Q=$q') # plot with Q values in legend
p.plot(i5.lastfit,symbol=0,line=[1,1,-1])   # plot fit as lines
p.save('test.agr')

** Released under the GPLv3 **

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

jscatter-1.8.1.tar.gz (19.6 MB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

jscatter-1.8.1-cp314-cp314-manylinux_2_34_x86_64.whl (33.0 MB view details)

Uploaded CPython 3.14manylinux: glibc 2.34+ x86-64

jscatter-1.8.1-cp314-cp314-macosx_15_0_arm64.whl (31.5 MB view details)

Uploaded CPython 3.14macOS 15.0+ ARM64

jscatter-1.8.1-cp313-cp313-manylinux_2_34_x86_64.whl (33.0 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.34+ x86-64

jscatter-1.8.1-cp313-cp313-macosx_15_0_arm64.whl (31.5 MB view details)

Uploaded CPython 3.13macOS 15.0+ ARM64

jscatter-1.8.1-cp312-cp312-manylinux_2_34_x86_64.whl (32.9 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.34+ x86-64

jscatter-1.8.1-cp312-cp312-macosx_15_0_arm64.whl (31.5 MB view details)

Uploaded CPython 3.12macOS 15.0+ ARM64

jscatter-1.8.1-cp311-cp311-manylinux_2_34_x86_64.whl (33.0 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.34+ x86-64

jscatter-1.8.1-cp311-cp311-macosx_15_0_arm64.whl (31.5 MB view details)

Uploaded CPython 3.11macOS 15.0+ ARM64

jscatter-1.8.1-cp310-cp310-manylinux_2_34_x86_64.whl (32.9 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.34+ x86-64

jscatter-1.8.1-cp310-cp310-macosx_15_0_arm64.whl (30.4 MB view details)

Uploaded CPython 3.10macOS 15.0+ ARM64

jscatter-1.8.1-cp39-cp39-manylinux_2_34_x86_64.whl (32.9 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.34+ x86-64

File details

Details for the file jscatter-1.8.1.tar.gz.

File metadata

  • Download URL: jscatter-1.8.1.tar.gz
  • Upload date:
  • Size: 19.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.13.11

File hashes

Hashes for jscatter-1.8.1.tar.gz
Algorithm Hash digest
SHA256 8190bd8003b9cd1565f70e47cd6ed13617f03808654723dd2ddd932819198f26
MD5 3f673f61a2d110ead1ef50393c4cbf67
BLAKE2b-256 2bb8d712056bae3def41fc79e8d5da142c0f7d22e04c6ecd92ee57cf0a3518c6

See more details on using hashes here.

File details

Details for the file jscatter-1.8.1-cp314-cp314-manylinux_2_34_x86_64.whl.

File metadata

File hashes

Hashes for jscatter-1.8.1-cp314-cp314-manylinux_2_34_x86_64.whl
Algorithm Hash digest
SHA256 39c1f39dba2fcd27ba9e8f111964df7bb60591da70245e1e0b8e37e0a535049b
MD5 ed8fb679d1b465d75ce7e3077befadc9
BLAKE2b-256 a36dbf4666348f87da6ef83de3b3ce0c473d077e7701e43753e0c1c14f635fbf

See more details on using hashes here.

File details

Details for the file jscatter-1.8.1-cp314-cp314-macosx_15_0_arm64.whl.

File metadata

File hashes

Hashes for jscatter-1.8.1-cp314-cp314-macosx_15_0_arm64.whl
Algorithm Hash digest
SHA256 8f56cdb86afd3d4a0d8b544e43034ec307269d9bee1042f36b6661e412a9b499
MD5 401e8024b414083f3bdb1232e503a6a4
BLAKE2b-256 440a079516c185b31f3d7dd34b1a8cf609329f18066cd1f216e5823810412f28

See more details on using hashes here.

File details

Details for the file jscatter-1.8.1-cp313-cp313-manylinux_2_34_x86_64.whl.

File metadata

File hashes

Hashes for jscatter-1.8.1-cp313-cp313-manylinux_2_34_x86_64.whl
Algorithm Hash digest
SHA256 afbfbb85cf7b72d02188b8d5ccd45b832f1f592e0d7a9fbcf5e02cce61d955bc
MD5 b8f41781056c7e9c9f0c12875a33564f
BLAKE2b-256 2a6a119ad17ddb0594bb9dd4caf54eb943eaaf02f973fd5a03aeba5afae3b582

See more details on using hashes here.

File details

Details for the file jscatter-1.8.1-cp313-cp313-macosx_15_0_arm64.whl.

File metadata

File hashes

Hashes for jscatter-1.8.1-cp313-cp313-macosx_15_0_arm64.whl
Algorithm Hash digest
SHA256 c92c5f7eca0dd3518904f4cccecab1c9c80e8c275727bc4f813ca1bc427dc81f
MD5 2718032633ff90902b903a1a1eea7d12
BLAKE2b-256 88929fe63afd70da684fa2d5503c66d04d414e3293f0adf037976da17836216f

See more details on using hashes here.

File details

Details for the file jscatter-1.8.1-cp312-cp312-manylinux_2_34_x86_64.whl.

File metadata

File hashes

Hashes for jscatter-1.8.1-cp312-cp312-manylinux_2_34_x86_64.whl
Algorithm Hash digest
SHA256 bfcf87b9e1a056a1826201a6195f85a0edb53d1984b91f040fc5fc47deae58c1
MD5 49ec5ba22cf07a16c8c8f9d25406f57f
BLAKE2b-256 59914631f8a2179caca621a06ea85ad084ae357a6be4ab2385fa893680fa9fac

See more details on using hashes here.

File details

Details for the file jscatter-1.8.1-cp312-cp312-macosx_15_0_arm64.whl.

File metadata

File hashes

Hashes for jscatter-1.8.1-cp312-cp312-macosx_15_0_arm64.whl
Algorithm Hash digest
SHA256 4d69231458a2b5704ff30396ab20527fe2b89baeb761a50c219952db4afd2e20
MD5 3e77a9d6becbe79453c24d4b4c6230e2
BLAKE2b-256 df5fba7c6e5e192e5231e4ea67c046a700a52aa4db3933e19fbfc2b7b2faa77e

See more details on using hashes here.

File details

Details for the file jscatter-1.8.1-cp311-cp311-manylinux_2_34_x86_64.whl.

File metadata

File hashes

Hashes for jscatter-1.8.1-cp311-cp311-manylinux_2_34_x86_64.whl
Algorithm Hash digest
SHA256 4ae0cacf5fb323eedf0156f5b97fd9680863f494621c5e9fc588df66ee325184
MD5 24eb53b17895eb0bb230f3a306e90bd4
BLAKE2b-256 9f9e5f47850caad5f966d2d8abc69cf3f634b4a360244d75f9f4d8460cf6e1aa

See more details on using hashes here.

File details

Details for the file jscatter-1.8.1-cp311-cp311-macosx_15_0_arm64.whl.

File metadata

File hashes

Hashes for jscatter-1.8.1-cp311-cp311-macosx_15_0_arm64.whl
Algorithm Hash digest
SHA256 d788b2b5124d3e70ce90dcc1f2578b3443eff4b9b44ac51f444a8cee30a3d7ed
MD5 af39e6b532de6982f90eae9b9703c75b
BLAKE2b-256 115677b45a7bdfff4f946f761f8b82175d8b88619ae57d3877bf9de2ba67eb49

See more details on using hashes here.

File details

Details for the file jscatter-1.8.1-cp310-cp310-manylinux_2_34_x86_64.whl.

File metadata

File hashes

Hashes for jscatter-1.8.1-cp310-cp310-manylinux_2_34_x86_64.whl
Algorithm Hash digest
SHA256 a80b06e19057b78c36d933243e58355ad3cbd6d04ce1b6521258d5ea98cd2c32
MD5 d65d15bfcbf1caed0bbb584fe853b86b
BLAKE2b-256 8aa2b31bb1ce9abbcce3a37c97dec7dbbeeeb2ca7df1158b6869dd571ffc63c3

See more details on using hashes here.

File details

Details for the file jscatter-1.8.1-cp310-cp310-macosx_15_0_arm64.whl.

File metadata

File hashes

Hashes for jscatter-1.8.1-cp310-cp310-macosx_15_0_arm64.whl
Algorithm Hash digest
SHA256 e4f31f496639477dcad861e3a2ac50ab4de8c050d6e02274269b9a6c07c1f7bb
MD5 e4a9c64753128e726f39762669d7599c
BLAKE2b-256 f4b34ca3e6fc6dc6062c5c38aa881e8164fce95ce04401cec553edd7380a0307

See more details on using hashes here.

File details

Details for the file jscatter-1.8.1-cp39-cp39-manylinux_2_34_x86_64.whl.

File metadata

File hashes

Hashes for jscatter-1.8.1-cp39-cp39-manylinux_2_34_x86_64.whl
Algorithm Hash digest
SHA256 9b1302b270422b533d94998b4fa66e4feb2b8968546784b678b6185207190c97
MD5 9ad894f7dfe221d7dcb045213d2e92ce
BLAKE2b-256 cccca54894b4a3f90164950d832407b7b20dfdf59c9919d348df63568a182a3b

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page