Skip to main content

Expand multi optional configuration to multiple configurations.

Project description

json-config-expander

Expand multi optional configuration to multiple configurations.

Example 1

base_config = {'param_1*': [12, 13]}
expand_configs(base_config)

Returns:

[{'param_1': 12}, {'param_1': 13})

Example 2

base_config = {'param_1': {'param_2*': [12, 13]}}
expand_configs(base_config)

Returns:

[
    {'param_1': {'param_2': 12}}, 
    {'param_1': {'param_2': 13}}
]

Example 3

base_config = {'param_1*': [12, 13], 'param_2*': ['a', 'b']}
expand_configs(base_config)

Returns:

[
    {'param_1': 12, 'param_2': 'a'}, 
    {'param_1': 12, 'param_2': 'b'}, 
    {'param_1': 13, 'param_2': 'a'}, 
    {'param_1': 13, 'param_2': 'b'}
]

Example 4

base_config = {
    'param_1*': [
        {'param_2*': [20, 30, 50]},
        {'param_3*': ['Big', 'Small']}
    ]
}
expand_configs(base_config)

Returns:

[
    {'param_1': {'param_2': 20}}, 
    {'param_1': {'param_2': 30}},
    {'param_1': {'param_2': 50}},  
    {'param_1': {'param_3': 'Big'}},
    {'param_1': {'param_3': 'Small'}}
]

Motivation Scenario

You would like to run a classification task on multiple parameters of multiple classifier types, and see which one performs better:
base_config = {
    'classifier*': [
        {'name': 'logistic_regression', 'max_iter*': [100, 200, 300]},
        {'name': 'xgboost', 'n_estimators*': [50, 100, 200], 'max_depth*': [3,4,5]}
    ]
}

To returns all the possible configurations of your setting:

expand_configs(base_config)

Returns:

[
    {'classifier': {'name': 'logistic_regression', 'max_iter': 100}}, 
    {'classifier': {'name': 'logistic_regression', 'max_iter': 200}}, 
    {'classifier': {'name': 'logistic_regression', 'max_iter': 300}}, 
    {'classifier': {'name': 'xgboost', 'n_estimators': 50, 'max_depth': 3}}, 
    {'classifier': {'name': 'xgboost', 'n_estimators': 50, 'max_depth': 4}}, 
    {'classifier': {'name': 'xgboost', 'n_estimators': 50, 'max_depth': 5}}, 
    {'classifier': {'name': 'xgboost', 'n_estimators': 100, 'max_depth': 3}}, 
    {'classifier': {'name': 'xgboost', 'n_estimators': 100, 'max_depth': 4}}, 
    {'classifier': {'name': 'xgboost', 'n_estimators': 100, 'max_depth': 5}}, 
    {'classifier': {'name': 'xgboost', 'n_estimators': 200, 'max_depth': 3}}, 
    {'classifier': {'name': 'xgboost', 'n_estimators': 200, 'max_depth': 4}}, 
    {'classifier': {'name': 'xgboost', 'n_estimators': 200, 'max_depth': 5}}
]

If you want to run evaluation on each configuration, you need to pass evaluation_function:

def evaluation_function(config):
    ...
results = expand_configs(base_config, evaluation_function)

The results list would have all the evaluation results on each config, then you can select the best result for your needs.

License

This project is licensed under the MIT License - see the LICENSE.md file for details

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for json-config-expander, version 0.6
Filename, size File type Python version Upload date Hashes
Filename, size json_config_expander-0.6-py3-none-any.whl (5.4 kB) File type Wheel Python version py3 Upload date Hashes View hashes
Filename, size json-config-expander-0.6.tar.gz (3.8 kB) File type Source Python version None Upload date Hashes View hashes

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page