Use this Lib to create a structure schema of a given JSON and also to check if a given JSON matches a given schema.
Project description
Use this Lib to create a structure schema of a given JSON and also to check if a given JSON matches a given schema or simply to diff 2 JSONs.
Why Should I Use This?
I made this for use when validating a JSON REST API using Behave. I wanted to be sure that the JSON’s structure is correct, no matter it’s content.
You may use it for whatever you want :)
Differ Features
Diff 2 JSONs
Schema Features
Export schema for a given JSON
Validate a given schema
Check if a given JSON matches a given schema
Highlight any unmatched data between JSON and schema
Differ Usage
diff_jsons()
Show differences between 2 JSONs
In [1]: from json_schema.json_differ import diff_jsons In [2]: diff_jsons('{"a": "1"}', '{"a": 2}') { "a": "'2' should match 'str:1'" } Out[2]: False In [3]: diff_jsons('{"a": "1"}', '{"a": "1"}') Out[3]: True
Schema Usage
json_schema.loads()
Load schema function. Receive a schema and return and JsonSchema object instance.
In [1]: from json_schema import json_schema In [2]: my_schema = '{"my_key": "int:0:10|str"}' In [3]: my_schema_object = json_schema.loads(my_schema) In [4]: my_schema_object Out[4]: <json_schema.JsonSchema at 0x10aa96f10>
json_schema.dumps()
Dump schema function. Receive a JSON and return an automaticaly created schema. Its very userful when working with some large or complex JSON. Be aware that you may have to adapt its returned schema to work with your JSON variations. For example, if your JSON have some optional value that, this time, is null the schema created will expect that that value is AWAYS null.
In [1]: from json_schema import json_schema In [2]: my_json = '{"parrot": ["is no more", "It has ceased to be"], "ex-parrot": true, "volts": 2000}' In [3]: my_automatic_schema = json_schema.dumps(my_json) In [4]: my_automatic_schema Out[4]: '{"ex-parrot": "bool", "parrot": ["str", "..."], "volts": "int"}'
json_schema.match()
Check if a given JSON matches a given schema.
In [1]: from json_schema import json_schema In [2]: my_json = '{"parrot": ["is no more", "It has ceased to be"], "ex-parrot": true, "volts": 2000}' In [3]: my_schema = '{"ex-parrot": "bool", "parrot": ["str", "..."], "volts": "int"}' In [4]: json_schema.match(my_json, my_schema) Out[4]: True
JsonSchema Object
Object that contains all validations e checkups for that given schema.
JsonSchema.full_check()
Check and highlights any errors found.
In [1]: from json_schema import json_schema In [2]: my_schema = '{"ex-parrot": "bool", "parrot": ["str", "..."], "volts": "int"}' In [3]: JS = json_schema.loads(my_schema) In [4]: my_json = '{"parrot": ["is no more", "It has ceased to be"], "ex-parrot": true, "volts": 2000}' In [5]: JS.full_check(my_json) { "ex-parrot": true, "parrot": [ true, true ], "volts": true } In [6]: other_json = '{"parrot": ["is no more", "It has ceased to be"], "ex-parrot": true, "volts": "foobar"}' In [7]: JS.full_check(other_json) { "ex-parrot": true, "parrot": [ true, true ], "volts": "'foobar' should match 'int'" }
Usage Example
In [1]: from json_schema import json_schema In [2]: um_json = '''{"chave_list": [1, 2], "chave_dict": {"chave": "valor"}, "chave_int": 1, "chave_float": 1.2, "chave_string": "1"}''' In [3]: esquema = json_schema.dumps(um_json) In [4]: print esquema {"chave_list": ["int", "..."], "chave_dict": {"chave": "str"}, "chave_int": "int", "chave_float": "float", "chave_string": "str"} In [5]: js = json_schema.loads(esquema) In [6]: js Out[6]: <json_schema.JsonSchema at 0x1064f0f50> In [7]: js == um_json Out[7]: True
Validators
string
Will match only if that given JSON data is string.
'{"my_key": "str"}'
Will match any of those:
'{"my_key": "my_value"}' '{"my_key": "my value"}' '{"my_key": ""}' '{"my_key": "123"}' '{"my_key": "3.567"}'
It my have max length limit using “str:max_len”
'{"my_key": "str:3"}'
Will match any of those:
'{"my_key": ""}' '{"my_key": "a"}' '{"my_key": "ab"}' '{"my_key": "abc"}' '{"my_key": "123"}'
But not match those:
'{"my_key": "abcd"}' '{"my_key": "abcde"}' '{"my_key": "1234"}'
Or direct string match using “str:string_to_match”
'{"my_key": "str:Foo Bar"}'
Will match only:
'{"my_key": "Foo Bar"}'
And not match those:
'{"my_key": "foo bar"}' '{"my_key": "Foo bar"}' '{"my_key": "anything else"}'
int
Will match only if that given JSON data is integer.
'{"my_key": "int"}'
Will match any of those:
'{"my_key": 0}' '{"my_key": 1}' '{"my_key": 12345}' '{"my_key": -1}' '{"my_key": -123}'
It my have min:max value limit using “int:min:max”
'{"my_key": "int:-3:3"}'
Will match any of those:
'{"my_key": 0}' '{"my_key": -1}' '{"my_key": -3}' '{"my_key": 1}' '{"my_key": 3}'
But not match those:
'{"my_key": -4}' '{"my_key": 4}' '{"my_key": 12345}'
float
Same as int but for float values
'{"my_key": "float"}'
Will match any of those:
'{"my_key": 0.0}' '{"my_key": 1.1}' '{"my_key": 123.45}' '{"my_key": -1.1}' '{"my_key": -12.3}'
It my have min:max value limit using “float:min:max”
'{"my_key": "float:-3.1:3.5"}'
Will match any of those:
'{"my_key": 0.0}' '{"my_key": -1.2}' '{"my_key": -3.1}' '{"my_key": 1.0}' '{"my_key": 3.5}'
But not match those:
'{"my_key": -4.0}' '{"my_key": 4.0}' '{"my_key": 123.45}' '{"my_key": 2}'
url
Will match only if that given JSON data is a string that contains a valid URL.
'{"my_key": "url"}'
Will match any of those:
'{"my_key": "http://example.com"}' '{"my_key": "https://example.com"}' '{"my_key": "ftp://example.com"}' '{"my_key": "ftps://example.com"}'
Validation is made using the folowing python regular expression code
regex = re.compile(r'^(?:http|ftp)s?://' # HTTP, HTTPS, FTP, FTPS # Dominio r'(?:(?:[A-Z0-9](?:[A-Z0-9-]{0,61}[A-Z0-9])?\.)+(?:[A-Z]{2,6}\.?|[A-Z0-9-]{2,}\.?)|' # Localhost r'localhost|' # IP r'\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3})' # Porta r'(?::\d+)?' r'(?:/?|[/?]\S+)$', re.IGNORECASE) return True if regex.match(item) else False
bool
Will match only if that given JSON data is boolean.
'{"my_key": "bool"}'
Will match only:
'{"my_key": true}' '{"my_key": false}'
You may also match it’s value:
'{"my_key": "bool:True"}' '{"my_key": "bool:False"}'
regex
Will match only if that given JSON data is string and match some regex string.
'{"my_key": "regex:[regex string]"}'
Example:
In [1]: from json_schema import json_schema In [2]: json_schema.loads('{"my_key": "regex:^[0-9]{2}:[0-9]{2}:[0-9]{2}"}') == '{"my_key": "00:00:00"}' Out[2]: True In [3]: json_schema.loads('{"my_key": "regex:^[0-9]{2}:[0-9]{2}:[0-9]{2}"}') == '{"my_key": "00:00:0"}' Out[3]: False In [4]: json_schema.loads('{"my_key": "regex:^[0-9]{2}:[0-9]{2}:[0-9]{2}"}') == '{"my_key": "00:00:AA"}' Out[4]: False
python
Will match only if that given python code return True. The value in JSON will be used as ‘value’ variable.
'{"my_key": "python:[python code]"}'
Example:
In [1]: from json_schema import json_schema In [2]: json_schema.loads('{"my_key": "python:value.upper() == value"}') == '{"my_key": "FOOBAR"}' Out[2]: True In [3]: json_schema.loads('{"my_key": "python:value.upper() == value"}') == '{"my_key": "FooBar"}' Out[3]: False In [4]: json_schema.loads('{"my_key": "python:value%2 == 2"}') == '{"my_key": 10}' Out[4]: True In [5]: json_schema.loads('{"my_key": "python:value%2 == 2"}') == '{"my_key": 11}' Out[5]: False
datetime
Will match only if that given value match with datetime string formatter https://docs.python.org/2/library/datetime.html#strftime-and-strptime-behavior
'{"my_key": "datetime:format string"}'
Example:
In [1]: from json_schema import json_schema In [2]: json_schema.loads('{"my_key": "datetime:%Y-%m-%d"}') == '{"my_key": "2015-07-07"}' Out[2]: True In [3]: json_schema.loads('{"my_key": "datetime:%Y-%m-%d"}') == '{"my_key": "2015-17-07"}' Out[3]: False In [4]: json_schema.loads('{"my_key": "datetime:%d/%m/%Y %H:%M:%S"}') == '{"my_key": "13/04/1984 11:22:33"}' Out[4]: True In [5]: json_schema.loads('{"my_key": "datetime:%d/%m/%Y %H:%M:%S"}') == '{"my_key": "04/13/1984 11:22:33"}' Out[5]: False
any
Will match anything but null.
'{"my_key": "any"}'
Will match any of those:
'{"my_key": 10}' '{"my_key": "foo"}' '{"my_key": 1.5}' '{"my_key": true}' '{"my_key": ""}'
But not
'{"my_key": null}'
null
Will match only null values.
'{"my_key": "null"}'
Will match:
'{"my_key": null}'
But not
'{"my_key": 10}' '{"my_key": "foo"}' '{"my_key": 1.5}' '{"my_key": true}' '{"my_key": ""}'
empty
Will match empty structures.
Supported:
'{"my_key": "empty:list"}' '{"my_key": "empty:dict"}' '{"my_key": "empty:hash"}' '{"my_key": "empty:object"}'
Types ‘hash’, ‘dict’ and ‘object’ are actually same
'{"my_key": "empty:list"}'
Will match:
'{"my_key": []}'
And
'{"my_key": "empty:object"}'
Will match:
'{"my_key": {}}'
But not
'{"my_key": null}'
Especial validations
‘|’ - OR operator
Will match if any of validators match.
'{"my_key": "str|int"}'
Will match:
'{"my_key": "foo"}' '{"my_key": 123}'
Example
In [1]: from json_schema import json_schema In [2]: json_schema.loads('{"my_key": "int|str"}') == '{"my_key": "foo"}' Out[2]: True In [3]: json_schema.loads('{"my_key": "int|str"}') == '{"my_key": 123}' Out[3]: True In [4]: json_schema.loads('{"my_key": "int:0:10|str:3"}') == '{"my_key": "foo"}' Out[4]: True In [5]: json_schema.loads('{"my_key": "int:0:10|str:3"}') == '{"my_key": 3}' Out[5]: True In [6]: json_schema.loads('{"my_key": "int:0:10|str:2"}') == '{"my_key": "foo"}' Out[6]: False In [7]: json_schema.loads('{"my_key": "int:10|str"}') == '{"my_key": 123}' Out[7]: False
This will match everything:
'{"my_key": "any|null"}'
Arrays
Arrays are ordered so your schema order matters as also its size.
'{"my_key": ["str", "str", "int"]}'
Will match:
'{"my_key": ["foo", "bar", 123]}'
But not
'{"my_key": ["foo", 123, "bar"]}' '{"my_key": ["foo", "bar", 123, 123]}'
If you dont know the size of your array you may user a special 2 item arrays as follows
'{"my_key": ["str", "..."]}'
That will match:
'{"my_key": ["foo"]}' '{"my_key": ["foo", "bar"]}' '{"my_key": ["foo", "bar", "Hello World"]}' '{"my_key": ["foo", "bar", "Hello World", "etc"]}'
Or even:
'{"my_key": ["str|int", "..."]}'
That will match:
'{"my_key": ["foo"]}' '{"my_key": [123]}' '{"my_key": ["foo", "bar"]}' '{"my_key": ["foo", 123, "Hello World"]}' '{"my_key": [123, "bar", "Hello World", 0]}'
Hashs (dicts)
Hashs are not ordered so your schema order does not matters but its keys does.
'{"my_key": {"internal_key_1": "str", "internal_key_2": "int"}'
Will match:
'{"my_key": {"internal_key_1": "foo", "internal_key_2": 123}' '{"my_key": {"internal_key_2": 123, "internal_key_2": "foo"}'
But not
'{"my_key": {"internal_key_1": 123, "internal_key_2": "foo"}' '{"my_key": {"internal_key_1": "foo", "internal_key_3": 123}' '{"my_key": {"internal_key_1": "foo", "internal_key_2": 123, "fizz": "buzz"}'
Recursivity
All validations are recursive so they will check into arrays, hashs, array of arrays, etc.
'[{"my_key": ["str|int", "..."]}, {"my_key": "str"}, "int", ["int|str", "str"]'
Will match:
'[{"my_key": [1, "foo", "bar", 100]}, {"my_key": "foo"}, 12345, [123, "foo"]'
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file json-schema-matcher-0.1.7.1.tar.gz
.
File metadata
- Download URL: json-schema-matcher-0.1.7.1.tar.gz
- Upload date:
- Size: 11.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f910175601b8e53fd34c8e61f6cd013d75a90b26f92934dd2cac724176c24226 |
|
MD5 | d076054497fc1ab40469be5c379fb1b5 |
|
BLAKE2b-256 | 70b3c3cdf35890851a43737a1c6adff990bf8d7b3d2116e13964fcaea671be48 |
File details
Details for the file json_schema_matcher-0.1.7.1-py2.py3-none-any.whl
.
File metadata
- Download URL: json_schema_matcher-0.1.7.1-py2.py3-none-any.whl
- Upload date:
- Size: 15.1 kB
- Tags: Python 2, Python 3
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8a647686b422a9223d8f8724117e6fd5afc13638c3801dccdef8f73d9ce1b9e8 |
|
MD5 | 53d3f3f3325f1b6e1a9087c36737aa1e |
|
BLAKE2b-256 | 89bbec2c99e6bfac7b8662f3a4b1788b8bf0f18996d7e17892ce43590d968f34 |