Converts a JSON file to an ONNX file.
Project description
json2onnx
Converts a JSON file to an ONNX file. Click here for onnx2json.
https://github.com/PINTO0309/simple-onnx-processing-tools
1. Setup
1-1. HostPC
### option
$ echo export PATH="~/.local/bin:$PATH" >> ~/.bashrc \
&& source ~/.bashrc
### run
$ pip install -U onnx protobuf \
&& python3 -m pip install -U onnx_graphsurgeon --index-url https://pypi.ngc.nvidia.com \
&& pip install -U json2onnx
1-2. Docker
https://github.com/PINTO0309/simple-onnx-processing-tools#docker
2. CLI Usage
usage:
json2onnx [-h]
--ij INPUT_JSON_PATH
-of OUTPUT_ONNX_FILE_PATH
optional arguments:
-h, --help
show this help message and exit
-ij INPUT_JSON_PATH, --input_json_path INPUT_JSON_PATH
Input JSON file path (*.json)
-of OUTPUT_ONNX_FILE_PATH, --output_onnx_file_path OUTPUT_ONNX_FILE_PATH
Output ONNX model path (*.onnx)
3. In-script Usage
>>> from json2onnx import convert
>>> help(convert)
Help on function convert in module json2onnx.json2onnx:
convert(
input_json_path: Union[str, NoneType] = '',
json_dict: Union[dict, NoneType] = None,
output_onnx_file_path: Union[str, NoneType] = ''
)
Parameters
----------
input_json_path: Optional[str]
Input onnx file path.
Either input_json_path or json_dict must be specified.
Default: ''
json_dict: Optional[dict]
onnx.ModelProto.
Either input_onnx_file_path or json_dict must be specified.
json_dict If specified, ignore input_json_path and process json_dict.
output_onnx_file_path: Optional[str]
Output onnx file path. If not specified, no ONNX file is output.
Default: ''
Returns
-------
onnx_graph: onnx.ModelProto
Converted ONNX.
4. CLI Execution
$ json2onnx \
--input_json_path NonMaxSuppression.json \
--output_onnx_file_path NonMaxSuppression.onnx
5. In-script Execution
from json2onnx import convert
onnx_graph = convert(
input_json_path="NonMaxSuppression.json",
output_onnx_file_path="NonMaxSuppression.onnx",
)
# or
onnx_graph = convert(
input_json_path="NonMaxSuppression.json",
)
# or
onnx_graph = convert(
json_dict=json_data,
output_onnx_file_path="NonMaxSuppression.onnx",
)
# or
onnx_graph = convert(
json_dict=json_data,
)
6. Issues
https://github.com/PINTO0309/simple-onnx-processing-tools/issues
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
json2onnx-2.0.3.tar.gz
(4.2 kB
view details)
Built Distribution
File details
Details for the file json2onnx-2.0.3.tar.gz
.
File metadata
- Download URL: json2onnx-2.0.3.tar.gz
- Upload date:
- Size: 4.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.18
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 69a0a25ae80b843dbfabc4d288a1e4265a1e79ee3d61ba65c1c7d455ee110170 |
|
MD5 | a90bd17d0eea93bc95a40561dee6126a |
|
BLAKE2b-256 | 9b599584dfd06ac0a1f552e25ab9d2d5354346b7a3da1897c09239d27ba46bda |
File details
Details for the file json2onnx-2.0.3-py3-none-any.whl
.
File metadata
- Download URL: json2onnx-2.0.3-py3-none-any.whl
- Upload date:
- Size: 5.0 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.18
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4f43a8982d3611c6884b6a035e58e31f4f50c60d0b3ea00dc9a510ffa2328982 |
|
MD5 | 4c932a65f56091dfd110a5e5b2156165 |
|
BLAKE2b-256 | 310a60e7581ffe96b5739858797f0c635b27c289465c3467c7930d2182369dd6 |