'A simple Parquet converter for JSON/python data'
Project description
This library wraps pyarrow to provide some tools to easily convert JSON data into Parquet format. It is mostly in Python. It iterates over files. It copies the data several times in memory. It is not meant to be the fastest thing available. However, it is convenient for smaller data sets, or people who don’t have a huge issue with speed.
Installation
With pip:
pip install json2parquet
With conda:
conda install -c conda-forge json2parquet
Usage
Here’s how to load a random JSON dataset.
from json2parquet import convert_json
# Infer Schema (requires reading dataset for column names)
convert_json(input_filename, output_filename)
# Given columns
convert_json(input_filename, output_filename, ["my_column", "my_int"])
# Given columns and custom field names
field_aliases = {'my_column': 'my_updated_column_name', "my_int": "my_integer"}
convert_json(input_filename, output_filename, ["my_column", "my_int"], field_aliases=field_aliases)
# Given PyArrow schema
import pyarrow as pa
schema = pa.schema([
pa.field('my_column', pa.string),
pa.field('my_int', pa.int64),
])
convert_json(input_filename, output_filename, schema)
You can also work with Python data structures directly
from json2parquet import load_json, ingest_data, write_parquet, write_parquet_dataset
# Loading JSON to a PyArrow RecordBatch (schema is optional as above)
load_json(input_filename, schema)
# Working with a list of dictionaries
ingest_data(input_data, schema)
# Working with a list of dictionaries and custom field names
field_aliases = {'my_column': 'my_updated_column_name', "my_int": "my_integer"}
ingest_data(input_data, schema, field_aliases)
# Writing Parquet Files from PyArrow Record Batches
write_parquet(data, destination)
# You can also pass any keyword arguments that PyArrow accepts
write_parquet(data, destination, compression='snappy')
# You can also write partitioned date
write_parquet_dataset(data, destination_dir, partition_cols=["foo", "bar", "baz"])
If you know your schema, you can specify custom datetime formats (only one for now). This formatting will be ignored if you don’t pass a PyArrow schema.
from json2parquet import convert_json
# Given PyArrow schema
import pyarrow as pa
schema = pa.schema([
pa.field('my_column', pa.string),
pa.field('my_int', pa.int64),
])
date_format = "%Y-%m-%dT%H:%M:%S.%fZ"
convert_json(input_filename, output_filename, schema, date_format=date_format)
Although json2parquet can infer schemas, it has helpers to pull in external ones as well
from json2parquet import load_json
from json2parquet.helpers import get_schema_from_redshift
# Fetch the schema from Redshift (requires psycopg2)
schema = get_schema_from_redshift(redshift_schema, redshift_table, redshift_uri)
# Load JSON with the Redshift schema
load_json(input_filename, schema)
Operational Notes
If you are using this library to convert JSON data to be read by Spark, Athena, Spectrum or Presto make sure you use use_deprecated_int96_timestamps when writing your Parquet files, otherwise you will see some really screwy dates.
Contributing
Code Changes
Clone a fork of the library
Run make setup
Run make test
Apply your changes (don’t bump version)
Add tests if needed
Run make test to ensure nothing broke
Submit PR
Documentation Changes
It is always a struggle to keep documentation correct and up to date. Any fixes are welcome. If you don’t want to clone the repo to work locally, please feel free to edit using Github and to submit Pull Requests via Github’s built in features.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file json2parquet-2.2.0.tar.gz
.
File metadata
- Download URL: json2parquet-2.2.0.tar.gz
- Upload date:
- Size: 10.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.16
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b40b2d6e2d98c6fe01a5b35e1a0d6685e24200b237c7e69ea64c00a36f555e59 |
|
MD5 | e9376f12010e8dccd93a3ae26c7f04da |
|
BLAKE2b-256 | ad9af89cf9347e1c3bf3d93fc5a37495ddd5b7d0f04a916d59598b52bfed6044 |
File details
Details for the file json2parquet-2.2.0-py3-none-any.whl
.
File metadata
- Download URL: json2parquet-2.2.0-py3-none-any.whl
- Upload date:
- Size: 7.7 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.16
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c0c2d458e15805e369445bfbec0461fc102380a5953f3c0c0ace87256710d6ce |
|
MD5 | 1250442095f2a58c3177ba7b8e80a09a |
|
BLAKE2b-256 | 1466c27e1c0db2299ab437284933ee63de4fb40c35dbb1b3a15028b8c4758351 |