Skip to main content

Python models (attrs, dataclasses or custom) generator from JSON data with typing module support

Project description

json2python-models

PyPI version Build Status Coverage Status Codacy Badge

Example

json2python-models is a Python tool that can generate Python models classes (dataclasses, attrs) from JSON dataset.

Features

  • Full typing module support
  • Types merging - if some field contains data of different types this will be represent as Union type
  • Fields and models names generation (unicode support included)
  • Similar models generalization
  • Handling recursive data structures (i.e family tree)
  • Detecting string literals (i.e. datetime or just stringify numbers) and providing decorators to easily convert into Python representation
  • Generation models as tree (nested models) or list
  • Specifying when dictionaries should be processed as dict type (by default every dict is considered as some model)
  • CLI tool

Table of Contents

Example

driver_standings.json
[
    {
        "season": "2019",
        "round": "3",
        "DriverStandings": [
            {
                "position": "1",
                "positionText": "1",
                "points": "68",
                "wins": "2",
                "Driver": {
                    "driverId": "hamilton",
                    "permanentNumber": "44",
                    "code": "HAM",
                    "url": "http://en.wikipedia.org/wiki/Lewis_Hamilton",
                    "givenName": "Lewis",
                    "familyName": "Hamilton",
                    "dateOfBirth": "1985-01-07",
                    "nationality": "British"
                },
                "Constructors": [
                    {
                        "constructorId": "mercedes",
                        "url": "http://en.wikipedia.org/wiki/Mercedes-Benz_in_Formula_One",
                        "name": "Mercedes",
                        "nationality": "German"
                    }
                ]
            },
            ...
        ]
    }
]
json2models -f attrs -l DriverStandings driver_standings.json
import attr
from json_to_models.dynamic_typing import IntString, IsoDateString
from typing import List


@attr.s
class DriverStandings:
    @attr.s
    class DriverStanding:
        @attr.s
        class Driver:
            driver_id: str = attr.ib()
            permanent_number: IntString = attr.ib(converter=IntString)
            code: str = attr.ib()
            url: str = attr.ib()
            given_name: str = attr.ib()
            family_name: str = attr.ib()
            date_of_birth: IsoDateString = attr.ib(converter=IsoDateString)
            nationality: str = attr.ib()
    
        @attr.s
        class Constructor:
            constructor_id: str = attr.ib()
            url: str = attr.ib()
            name: str = attr.ib()
            nationality: str = attr.ib()
    
        position: IntString = attr.ib(converter=IntString)
        position_text: IntString = attr.ib(converter=IntString)
        points: IntString = attr.ib(converter=IntString)
        wins: IntString = attr.ib(converter=IntString)
        driver: 'Driver' = attr.ib()
        constructors: List['Constructor'] = attr.ib()

    season: IntString = attr.ib(converter=IntString)
    round: IntString = attr.ib(converter=IntString)
    driver_standings: List['DriverStanding'] = attr.ib()

Installation

Be ware: this project supports only python3.7 and higher.

To install it, use pip:

pip install json2python-models

Or you can build it from source:

git clone https://github.com/bogdandm/json2python-models.git
cd json2python-models
python setup.py install

Usage

CLI

For regular usage CLI tool is the best option. After you install this package you could use it as json2models <arguments> or python -m json_to_models <arguments>. I.e.:

json2models -m Car car_*.json -f attrs > car.py

Arguments:

  • -h, --help - Show help message and exit

  • -m, --model - Model name and its JSON data as path or unix-like path pattern. *, ** or ? patterns symbols are supported.

    • Format: -m <Model name> [<JSON files> ...]
    • Example: -m Car audi.json reno.json or -m Car audi.json -m Car reno.json (results will be the same)
  • -l, --list - Like -m but given json file should contain list of model data (dataset). If this file contains dict with nested list than you can pass <JSON key> to lookup. Deep lookups are supported by dot-separated path. If no lookup needed pass - as <JSON key>.

    • Format: -l <Model name> <JSON key> <JSON file>
    • Example: -l Car - cars.json -l Person fetch_results.items.persons result.json
    • Note: Models names under this arguments should be unique.
  • -f, --framework - Model framework for which python code is generated. base (default) mean no framework so code will be generated without any decorators and additional meta-data.

    • Format: -f {base,attrs,dataclasses,custom}
    • Example: -f attrs
    • Default: -f base
  • -s , --structure - Models composition style.

    • Format: -s {nested, flat}
    • Example: -s flat
    • Default: -s nested
  • --datetime - Enable datetime/date/time strings parsing.

    • Default: disabled
    • Warning: This can lead to 6-7 times slowdown on large datasets. Be sure that you really need this option.
  • --strings-converters - Enable generation of string types converters (i.e. IsoDatetimeString or BooleanString).

    • Default: disabled
  • --merge - Merge policy settings. Possible values are:

    • Format: --merge MERGE_POLICY [MERGE_POLICY ...]
    • Possible values (MERGE_POLICY):
      • percent[_<percent>] - two models had a certain percentage of matched field names. Custom value could be i.e. percent_95.
      • number[_<number>] - two models had a certain number of matched field names.
      • exact - two models should have exact same field names to merge.
    • Example: --merge percent_95 number_20 - merge if 95% of fields are matched or 20 of fields are matched
    • Default: --merge percent_70 number_10
  • --dict-keys-regex, --dkr - List of regular expressions (Python syntax). If all keys of some dict are match one of the pattern then this dict will be marked as dict field but not nested model.

    • Format: --dkr RegEx [RegEx ...]
    • Example: --dkr node_\d+ \d+_\d+_\d+
    • Note: ^ and $ (string borders) tokens will be added automatically but you have escape to other special characters manually.
    • Optional
  • --dict-keys-fields, --dkf - List of model fields names that will be marked as dict fields

    • Format: --dkf FIELD_NAME [FIELD_NAME ...]
    • Example: --dkf "dict_data" "mapping"
    • Optional
  • --code-generator - Absolute import path to GenericModelCodeGenerator subclass.

    • Format: --code-generator CODE_GENERATOR
    • Example: -f mypackage.mymodule.DjangoModelsGenerator
    • Note: Is ignored without -f custom but is required with it.
  • --code-generator-kwargs - List of GenericModelCodeGenerator subclass arguments (for __init__ method, see docs of specific subclass). Each argument should be in following format: argument_name=value or "argument_name=value with space". Boolean values should be passed in JS style: true or false

    • Format: --code-generator-kwargs [NAME=VALUE [NAME=VALUE ...]]
    • Example: --code-generator-kwargs kwarg1=true kwarg2=10 "kwarg3=It is string with spaces"
    • Optional

One of model arguments (-m or -l) is required.

Low level API

Coming soon (Wiki)

Tests

To run tests you should clone project and run setup.py script:

git clone https://github.com/bogdandm/json2python-models.git
cd json2python-models
python setup.py test -a '<pytest additional arguments>'

Also I would recommend you to install pytest-sugar for pretty printing test results

Test examples

You can find out some examples of usage of this project at testing_tools/real_apis/...

Each file contains functions to download data from some online API (references included at the top of file) and main function that generates and prints code. Some examples may print debug data before actual code. Downloaded data will be saved at testing_tools/real_apis/<name of example>/<dataset>.json

Built With

Test tools:

Contributing

Feel free to open pull requests with new features or bug fixes. Just follow few rules:

  1. Always use some code formatter (black or PyCharm built-in)
  2. Keep code coverage above 95-98%
  3. All existing tests should be passed (including test examples from testing_tools/real_apis)
  4. Use typing module
  5. Fix codacy issues from your PR

License

This project is licensed under the MIT License - see the LICENSE file for details

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

json2python-models-0.1.0.tar.gz (44.5 kB view hashes)

Uploaded Source

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page