Skip to main content

A JSON data binding library for Python

Project description

Introduction

This library supports two-way data binding between JSON and Python class.

Turorial

Here is a simple example to use jsonalize:

from jsonalize import *


# Define a class
class MyData(JSONObject):
    def __init__(self):
        JSONObject.__init__(self)
        self.id = JSONString()
        self.name = JSONString()
        self.age = JSONInt()
        self.weight = JSONFloat()


# Create an object of MyData
my = MyData()
my.id = "20190101"
my.name = "Stanley"
my.age = 28
my.weight = 60

# jsonalize the object
json_str = my.to_json()
print(json_str)

# restore the object from json
my2 = JSONObject.from_json(MyData, json_str)
print(my2.to_json())

This example should output the following message:

{"age": 28, "id": "20190101", "weight": 60.0, "name": "Stanley"}
{"age": 28, "id": "20190101", "weight": 60.0, "name": "Stanley"}

Key points from this tutorial

  • A serializable class should inherit the JSONObject class
  • Don't forget to invoke the __init__ method in your class
  • The serializable class attributes should be set as JSON** types

List of supported JSON types

  • JSONInt
  • JSONLong
  • JSONFloat
  • JSONComplex
  • JSONBool
  • JSONString
  • JSONList
  • JSONSet
  • JSONDict
  • JSONObject

Most of the types can be initialized with an initial value, for example:

a_string = JSONString("hello jsonalize")

Remarks for JSONBool

You can't test the value of a JSONBool object with the is keyword, because is will compare the instance id of two objects, but an object of JSONBool is never an instance of True or False.

You can do the test as follows:

a_bool = JSONBool(True)
print(a_bool is True, a_bool == True)
# False, True
print(a_bool.true(), a_bool.true() is True, a_bool.equals(True))
# True, True, True

A more complex example

You can have an object of JSONObject in another JSONObject class:

class Monitor(JSONObject):
    def __init__(self):
        JSONObject.__init__(self)
        self.size = JSONFloat()
        self.power = JSONFloat()
        self.color = JSONString()


class Computer(JSONObject):
    def __init__(self):
        JSONObject.__init__(self)
        self.brand = JSONString()
        self.monitor = Monitor()


computer = Computer()
computer.brand = "Lenovo"
computer.monitor.size = 23.0
computer.monitor.power = 25.0

json_str = computer.to_json()
print(json_str)
#{"brand": "Lenovo", "monitor": {"color": "", "power": 25.0, "size": 23.0}}

computer2 = JSONObject.from_json(Computer, json_str)
print(computer2.to_json())
#{"brand": "Lenovo", "monitor": {"color": "", "power": 25.0, "size": 23.0}}

A list of JSONObject objects?

Look at the following example:

class Student(JSONObject):
    def __init__(self):
        JSONObject.__init__(self)
        self.id = JSONString()
        self.name = JSONString()


class School(JSONObject):
    def __init__(self):
        JSONObject.__init__(self)
        self.address = JSONString()
        self.students = JSONList()


stu1 = Student()
stu1.id = "20190202"
stu1.name = "Stanley"

stu2 = Student()
stu2.id = "20190203"
stu2.name = "Cyrus"

school = School()
school.address = "Central Street No.23"
school.students.append(stu1)
school.students.append(stu2)

json_str = school.to_json()
print(json_str)
#{"students": [{"id": "20190202", "name": "Stanley"}, {"id": "20190203", "name": "Cyrus"}], "address": "Central Street No.23"}

school2 = JSONObject.from_json(School, json_str)
print(type(school2.students[0]), school2.students[0])
#(<type 'dict'>, {u'id': u'20190202', u'name': u'Stanley'})

As you can see here, the deserializing of the School object is incorrect. Because any type of object could be appended to school.students, so jsonalize don't know what to restore when deserializing.

This problem is currently not resolved, maybe I can add a type mapping structure in the future.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

jsonalize-0.0.1.tar.gz (4.6 kB view details)

Uploaded Source

Built Distribution

jsonalize-0.0.1-py2-none-any.whl (6.1 kB view details)

Uploaded Python 2

File details

Details for the file jsonalize-0.0.1.tar.gz.

File metadata

  • Download URL: jsonalize-0.0.1.tar.gz
  • Upload date:
  • Size: 4.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.6.2 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.2

File hashes

Hashes for jsonalize-0.0.1.tar.gz
Algorithm Hash digest
SHA256 d2b045153fa88cc312378722407abeb5403a6b23b9bfdce6370ac2e9545cffd3
MD5 d8174747cbd410d5cab6cc4433373417
BLAKE2b-256 1ce79e3a064c42e48648ed229be1a5a9ba30235f53791378e71c4a381a52aa1f

See more details on using hashes here.

File details

Details for the file jsonalize-0.0.1-py2-none-any.whl.

File metadata

  • Download URL: jsonalize-0.0.1-py2-none-any.whl
  • Upload date:
  • Size: 6.1 kB
  • Tags: Python 2
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.6.2 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.2

File hashes

Hashes for jsonalize-0.0.1-py2-none-any.whl
Algorithm Hash digest
SHA256 7c98806598d291be3bdb9d8b6c7299ce6640b822674f1b88e4a1f3a2d81a0c16
MD5 a1d588133f41d14b96a8d37ff84ed1de
BLAKE2b-256 ce62bf50a64e2f9c7f3918bacb2f1d92f46591eb98955455d2b0758738e50fbc

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page