Skip to main content

A JSON data binding library for Python

Project description

Introduction

This library supports two-way data binding between JSON and Python class.

Turorial

Here is a simple example to use jsonalize:

from jsonalize import *


# Define a class
class MyData(JSONObject):
    def __init__(self):
        JSONObject.__init__(self)
        self.id = JSONString()
        self.name = JSONString()
        self.age = JSONInt()
        self.weight = JSONFloat()


# Create an object of MyData
my = MyData()
my.id = "20190101"
my.name = "Stanley"
my.age = 28
my.weight = 60

# jsonalize the object
json_str = my.to_json()
print(json_str)

# restore the object from json
my2 = JSONObject.from_json(MyData, json_str)
print(my2.to_json())

This example should output the following message:

{"age": 28, "id": "20190101", "weight": 60.0, "name": "Stanley"}
{"age": 28, "id": "20190101", "weight": 60.0, "name": "Stanley"}

Key points from this tutorial

  • A serializable class should inherit the JSONObject class
  • Don't forget to invoke the __init__ method in your class
  • The serializable class attributes should be set as JSON** types

List of supported JSON types

  • JSONInt
  • JSONLong (Only in Python 2)
  • JSONFloat
  • JSONComplex
  • JSONBool
  • JSONString
  • JSONList
  • JSONSet
  • JSONDict
  • JSONObject

Most of the types can be initialized with an initial value, for example:

a_string = JSONString("hello jsonalize")

Remarks for JSONBool

You can't test the value of a JSONBool object with the is keyword, because is will compare the instance id of two objects, but an object of JSONBool is never an instance of True or False.

You can do the test as follows:

a_bool = JSONBool(True)
print(a_bool is True, a_bool == True)
# False, True
print(a_bool.true(), a_bool.true() is True, a_bool.equals(True))
# True, True, True

A more complex example

You can have an object of JSONObject in another JSONObject class:

class Monitor(JSONObject):
    def __init__(self):
        JSONObject.__init__(self)
        self.size = JSONFloat()
        self.power = JSONFloat()
        self.color = JSONString()


class Computer(JSONObject):
    def __init__(self):
        JSONObject.__init__(self)
        self.brand = JSONString()
        self.monitor = Monitor()


computer = Computer()
computer.brand = "Lenovo"
computer.monitor.size = 23.0
computer.monitor.power = 25.0

json_str = computer.to_json()
print(json_str)
#{"brand": "Lenovo", "monitor": {"color": "", "power": 25.0, "size": 23.0}}

computer2 = JSONObject.from_json(Computer, json_str)
print(computer2.to_json())
#{"brand": "Lenovo", "monitor": {"color": "", "power": 25.0, "size": 23.0}}

A list of JSONObject objects?

Look at the following example:

class Student(JSONObject):
    def __init__(self):
        JSONObject.__init__(self)
        self.id = JSONString()
        self.name = JSONString()


class School(JSONObject):
    def __init__(self):
        JSONObject.__init__(self)
        self.address = JSONString()
        self.students = JSONList()


stu1 = Student()
stu1.id = "20190202"
stu1.name = "Stanley"

stu2 = Student()
stu2.id = "20190203"
stu2.name = "Cyrus"

school = School()
school.address = "Central Street No.23"
school.students.append(stu1)
school.students.append(stu2)

json_str = school.to_json()
print(json_str)
#{"students": [{"id": "20190202", "name": "Stanley"}, {"id": "20190203", "name": "Cyrus"}], "address": "Central Street No.23"}

school2 = JSONObject.from_json(School, json_str)
print(type(school2.students[0]), school2.students[0])
#(<type 'dict'>, {u'id': u'20190202', u'name': u'Stanley'})

As you can see here, the deserializing of the School object is incorrect. Because any type of object could be appended to school.students, so jsonalize don't know what to restore when deserializing.

This problem is currently not resolved, maybe I can add a type mapping structure in the future.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

jsonalize-0.1.tar.gz (4.7 kB view details)

Uploaded Source

Built Distribution

jsonalize-0.1-py2-none-any.whl (5.3 kB view details)

Uploaded Python 2

File details

Details for the file jsonalize-0.1.tar.gz.

File metadata

  • Download URL: jsonalize-0.1.tar.gz
  • Upload date:
  • Size: 4.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.6.2 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.2

File hashes

Hashes for jsonalize-0.1.tar.gz
Algorithm Hash digest
SHA256 5ffbc3553fb6fbabae22d04e07f3b646108d51255c16ee144074c0d1a802aab5
MD5 b3910862b41f34381886bd25ab0ca890
BLAKE2b-256 0dd447b4f7fdf7019d21e225b4388bcb286a4f0684b8702c6e9b117afa9c71f1

See more details on using hashes here.

File details

Details for the file jsonalize-0.1-py2-none-any.whl.

File metadata

  • Download URL: jsonalize-0.1-py2-none-any.whl
  • Upload date:
  • Size: 5.3 kB
  • Tags: Python 2
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.6.2 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.2

File hashes

Hashes for jsonalize-0.1-py2-none-any.whl
Algorithm Hash digest
SHA256 4cb01659031ac30d7ca31510afc870a009cef712ddce7466e9a830d1bd2cb970
MD5 1e7d42b214d05a1d7bca6c93cf1136d7
BLAKE2b-256 8ac1a4896a2b822eb500f100080e496088800037a735b5e529c22a60c3957f1b

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page