Skip to main content

Package short description.

Project description

Documentation Status https://github.com/MacHu-GWU/jsonpolars-project/actions/workflows/main.yml/badge.svg https://codecov.io/gh/MacHu-GWU/jsonpolars-project/branch/main/graph/badge.svg https://img.shields.io/pypi/v/jsonpolars.svg https://img.shields.io/pypi/l/jsonpolars.svg https://img.shields.io/pypi/pyversions/jsonpolars.svg https://img.shields.io/badge/Release_History!--None.svg?style=social https://img.shields.io/badge/STAR_Me_on_GitHub!--None.svg?style=social
https://img.shields.io/badge/Link-Document-blue.svg https://img.shields.io/badge/Link-API-blue.svg https://img.shields.io/badge/Link-Install-blue.svg https://img.shields.io/badge/Link-GitHub-blue.svg https://img.shields.io/badge/Link-Submit_Issue-blue.svg https://img.shields.io/badge/Link-Request_Feature-blue.svg https://img.shields.io/badge/Link-Download-blue.svg

Welcome to jsonpolars Documentation

https://jsonpolars.readthedocs.io/en/latest/_static/jsonpolars-logo.png

jsonpolars is an innovative Python library designed to bridge the gap between JSON-based data manipulation syntax and the powerful Polars data processing library. This project aims to provide a flexible and intuitive way to express Polars operations using JSON structures, making it easier for developers to work with Polars in various contexts. The library allows users to define complex data transformations using JSON syntax, which can then be translated into native Polars operations.

Here’s a simple example of how to use jsonpolars:

import polars as pl
from jsonpolars.api import parse_dfop

# Create a sample DataFrame
df = pl.DataFrame(
    [
        {"id": 1, "firstname": "Alice", "lastname": "Smith"},
        {"id": 2, "firstname": "Bob", "lastname": "Johnson"},
        {"id": 3, "firstname": "Cathy", "lastname": "Williams"},
    ]
)

# Define the operation using JSON structure
dfop_data = {
    "type": "with_columns",
    "exprs": [
        {
            "type": "alias",
            "name": "fullname",
            "expr": {
                "type": "plus",
                "left": {"type": "column", "name": "firstname"},
                "right": {
                    "type": "plus",
                    "left": {
                        "type": "lit",
                        "value": " ",
                    },
                    "right": {"type": "column", "name": "lastname"},
                },
            },
        }
    ],
}

# Parse and apply the operation
op = parse_dfop(dfop_data)
df1 = op.to_polars(df)
print(df1)

Output:

shape: (3, 4)
┌─────┬───────────┬──────────┬────────────────┐
 id   firstname  lastname  fullname       
 ---  ---        ---       ---            
 i64  str        str       str            
╞═════╪═══════════╪══════════╪════════════════╡
 1    Alice      Smith     Alice Smith    
 2    Bob        Johnson   Bob Johnson    
 3    Cathy      Williams  Cathy Williams 
└─────┴───────────┴──────────┴────────────────┘

In addition to JSON-based syntax, jsonpolars allows you to define operations using Python objects for a more Pythonic approach. Here’s how you can use this feature:

import json

# Define the operation using Python objects
op = dfop.WithColumns(
    exprs=[
        expr.Alias(
            name="fullname",
            expr=expr.Plus(
                left=expr.Column(name="firstname"),
                right=expr.Plus(
                    left=expr.Lit(value=" "),
                    right=expr.Column(name="lastname"),
                ),
            ),
        )
    ]
)

# Convert the operation to JSON (optional, for visualization)
print(json.dumps(op.to_dict(), indent=4))

Output:

{
    "type": "with_columns",
    "exprs": [
        {
            "type": "alias",
            "name": "fullname",
            "expr": {
                "type": "add",
                "left": {
                    "type": "column",
                    "name": "firstname"
                },
                "right": {
                    "type": "add",
                    "left": {
                        "type": "func_lit",
                        "value": " ",
                        "dtype": null,
                        "allow_object": false
                    },
                    "right": {
                        "type": "column",
                        "name": "lastname"
                    }
                }
            }
        }
    ],
    "named_exprs": {}
}

The to_polars() method seamlessly translates your Python object-based operation into Polars code, allowing you to apply complex transformations with ease.

# Apply the operation to a Polars DataFrame
df1 = op.to_polars(df)
print(df1)

Output:

shape: (3, 4)
┌─────┬───────────┬──────────┬────────────────┐
 id   firstname  lastname  fullname       
 ---  ---        ---       ---            
 i64  str        str       str            
╞═════╪═══════════╪══════════╪════════════════╡
 1    Alice      Smith     Alice Smith    
 2    Bob        Johnson   Bob Johnson    
 3    Cathy      Williams  Cathy Williams 
└─────┴───────────┴──────────┴────────────────┘

Install

jsonpolars is released on PyPI, so all you need is to:

$ pip install jsonpolars

To upgrade to latest version:

$ pip install --upgrade jsonpolars

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

jsonpolars-0.3.2.tar.gz (34.0 kB view details)

Uploaded Source

Built Distribution

jsonpolars-0.3.2-py3-none-any.whl (38.3 kB view details)

Uploaded Python 3

File details

Details for the file jsonpolars-0.3.2.tar.gz.

File metadata

  • Download URL: jsonpolars-0.3.2.tar.gz
  • Upload date:
  • Size: 34.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.10

File hashes

Hashes for jsonpolars-0.3.2.tar.gz
Algorithm Hash digest
SHA256 c1eb36179976b234f50a297b07a0ba783506260c335640c820ee453eb36c40ed
MD5 e1328f6d65272148089c45df36c99125
BLAKE2b-256 56eac1f4b8b8d4d64604db2f02f3a2aa02b35ccadd80eafb9736943d6eca851e

See more details on using hashes here.

File details

Details for the file jsonpolars-0.3.2-py3-none-any.whl.

File metadata

  • Download URL: jsonpolars-0.3.2-py3-none-any.whl
  • Upload date:
  • Size: 38.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.10

File hashes

Hashes for jsonpolars-0.3.2-py3-none-any.whl
Algorithm Hash digest
SHA256 3f7172f7e3b832cb5d6185fdc8b77710be419947dab4ec4e9944dc8290848248
MD5 372191ab3ff9b44d2f3025f55d73085d
BLAKE2b-256 ed45a58ef07d73b4943b15d4d3c136eb383f2fcfcf0eac3fa40f59d62944128c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page