Skip to main content

Export a JSON Schema document to Markdown documentation.

Project description

jsonschema-markdown

PyPI Docker

Generate markdown documentation from JSON Schema files. The main goal is to generate documentation that is easy to read and understand.

Can be used as a command line tool or as a library.

Easy to use in CI/CD pipelines, as a Docker image is available.

Installation

pipx install jsonschema-markdown

Usage

To use jsonschema-markdown as a CLI, just pass the filename as an argument and redirect the output to a file.

$ jsonschema-markdown --help
Usage: jsonschema-markdown [OPTIONS] FILENAME

  Load FILENAME and output a markdown version.

  Use '-' as FILENAME to read from stdin.

Options:
  -t, --title TEXT                Do not use the title from the schema, use
                                  this title instead.
  --footer / --no-footer          Add a footer with a link to the project.
                                  [default: footer]
  --empty-columns / --no-empty-columns
                                  Remove empty columns from the output, useful
                                  when deprecated or examples are not used.
                                  [default: empty-columns]
  --resolve / --no-resolve        [Experimental] Resolve $ref pointers.
                                  [default: no-resolve]
  --debug / --no-debug            Enable debug output.  [default: no-debug]
  --examples-format [text|yaml|json]
                                  Format of the examples in the output.
                                  [default: text]
  --version                       Show the version and exit.
  --help                          Show this message and exit.

# Example
$ jsonschema-markdown schema.json > schema.md

Usage with Docker

The jsonschema-markdown command is also available as a Docker image. To use it, you can mount the schema file as a volume.

cat my-schema.json | docker run --rm -i elisiariocouto/jsonschema-markdown - > schema.md

⚠️ Warning: Do not pass the -t flag.

The Docker image is available at:

Usage as a library

To use it as a library, load your JSON schema file as Python dict and pass it to generate. The function will return a string with the markdown.

import jsonschema_markdown

with open('schema.json') as f:
    schema = json.load(f)

markdown = jsonschema_markdown.generate(schema)

Features

The goal is to support the latest JSON Schema specification, 2020-12. However, this project does not currently support all features, but it should support:

  • Required fields
  • String patterns
  • Enumerations
  • Default values
  • Descriptions and titles
  • Nested objects using $defs or definitions
  • Basic oneOf, anyOf, allOf functionality
  • Arrays
  • Integers with minimum, maximum values and exclusives
  • Boolean values
  • Deprecated fields (using the deprecated option, additionaly searches for case-insensitive deprecated in the field description)
  • Supports optional YAML and JSON formatting for examples

Caveats

  • This project is still in early development, and the output may change in the future.
  • Custom definitions are expected to be in the same file as the schema that uses them, in the definitions or $defs parameter at the root of the document.
  • Inline nested definitions are not represented in the output yet. See #18.

Examples

Example 1 Input

Given the following JSON Schema:

{
  "$id": "https://example.com/movie.schema.json",
  "$schema": "https://json-schema.org/draft/2020-12/schema",
  "description": "A representation of a movie",
  "type": "object",
  "required": ["title", "director", "releaseDate"],
  "properties": {
    "title": {
      "type": "string"
    },
    "director": {
      "type": "string"
    },
    "releaseDate": {
      "type": "string",
      "format": "date"
    },
    "genre": {
      "type": "string",
      "enum": ["Action", "Comedy", "Drama", "Science Fiction"]
    },
    "duration": {
      "type": "string"
    },
    "cast": {
      "type": "array",
      "items": {
        "type": "string"
      },
      "additionalItems": false
    }
  }
}

Example 1 Ouput

The following markdown will be generated:


jsonschema-markdown

A representation of a movie

Type: object

Property Type Required Possible values Deprecated Default Description Examples
title string string
director string string
releaseDate string Format: date
genre string Action Comedy Drama Science Fiction
duration string string
cast array string

Markdown generated with jsonschema-markdown.


Example 2

In tests/model.py you can see a more complex example of a model that is exported as a JSON Schema.

The output can be seen in tests/model.md.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

jsonschema_markdown-0.3.13.tar.gz (10.6 kB view details)

Uploaded Source

Built Distribution

jsonschema_markdown-0.3.13-py3-none-any.whl (10.8 kB view details)

Uploaded Python 3

File details

Details for the file jsonschema_markdown-0.3.13.tar.gz.

File metadata

  • Download URL: jsonschema_markdown-0.3.13.tar.gz
  • Upload date:
  • Size: 10.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for jsonschema_markdown-0.3.13.tar.gz
Algorithm Hash digest
SHA256 983d1ac74e8c5a24234b646fb30a0aff62183acd44cb88b2afda29bfd158ddae
MD5 1c0c667413eeabd9056010d0df0d9e44
BLAKE2b-256 542b2df90582d252dbac925fb28b2b973ecb17aa325f1e2df77c31704c99e177

See more details on using hashes here.

File details

Details for the file jsonschema_markdown-0.3.13-py3-none-any.whl.

File metadata

File hashes

Hashes for jsonschema_markdown-0.3.13-py3-none-any.whl
Algorithm Hash digest
SHA256 184a6b8d65324bbe7a185f9f746feb5a3ed503296c2860f661e75fe3366f82b6
MD5 aa6ce905c878a4a9d9b937620bacb4a9
BLAKE2b-256 ca836f0f9bfe1c0bd63e5df4fb06843e5c0a5ebb5eaa2fb5cad10b589aa696e1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page