Skip to main content

A utility library for working with JSON Table Schema in Python

Project description

# JSON Table Schema

[![Travis](https://travis-ci.org/frictionlessdata/jsontableschema-py.svg?branch=master)](https://travis-ci.org/frictionlessdata/jsontableschema-py)
[![Coveralls](http://img.shields.io/coveralls/frictionlessdata/jsontableschema-py.svg?branch=master)](https://coveralls.io/r/frictionlessdata/jsontableschema-py?branch=master)
[![PyPi](https://img.shields.io/pypi/v/jsontableschema.svg)](https://pypi.python.org/pypi/jsontableschema)
[![SemVer](https://img.shields.io/badge/versions-SemVer-brightgreen.svg)](http://semver.org/)
[![Gitter](https://img.shields.io/gitter/room/frictionlessdata/chat.svg)](https://gitter.im/frictionlessdata/chat)

A utility library for working with [JSON Table Schema](http://dataprotocols.org/json-table-schema/) in Python.

> With v0.7 renewed API has been introduced in backward-compatibility manner. Documentation for deprecated API could be found [here](https://github.com/frictionlessdata/jsontableschema-py/tree/0.6.5#json-table-schema). Deprecated API will be removed with v1 release.

## Features

- `Table` to work with data tables described by JSON Table Schema
- `Schema` representing JSON Table Schema
- `Field` representing JSON Table Schema field
- `validate` to validate JSON Table Schema
- `infer` to infer JSON Table Schema from data
- built-in command-line interface to validate and infer schemas
- storage/plugins system to connect tables to different storage backends like SQL Database

## Gettings Started

### Installation

```bash
pip install jsontableschema
```
### Example

```python
from jsontableschema import Table

# Create table
table = Table('path.csv', schema='schema.json')

# Print schema descriptor
print(table.schema.descriptor)

# Print cast rows in a dict form
for keyed_row in table.iter(keyed=True):
print(keyed_row)
```

### Table

Table represents data described by JSON Table Schema:

```python
# pip install sqlalchemy jsontableschema-sql
import sqlalchemy as sa
from pprint import pprint
from jsontableschema import Table

# Data source
SOURCE = 'https://raw.githubusercontent.com/okfn/jsontableschema-py/master/data/data_infer.csv'

# Create SQL database
db = sa.create_engine('sqlite://')

# Data processor
def skip_under_30(erows):
for number, headers, row in erows:
krow = dict(zip(headers, row))
if krow['age'] >= 30:
yield (number, headers, row)

# Work with table
table = Table(SOURCE, post_cast=[skip_under_30])
table.schema.save('tmp/persons.json') # Save INFERRED schema
table.save('persons', backend='sql', engine=db) # Save data to SQL
table.save('tmp/persons.csv') # Save data to DRIVE

# Check the result
pprint(Table('persons', backend='sql', engine=db).read(keyed=True))
pprint(Table('tmp/persons.csv').read(keyed=True))
# Will print (twice)
# [{'age': 39, 'id': 1, 'name': 'Paul'},
# {'age': 36, 'id': 3, 'name': 'Jane'}]
```

### Schema

A model of a schema with helpful methods for working with the schema and supported data. Schema instances can be initialized with a schema source as a filepath or url to a JSON file, or a Python dict. The schema is initially validated (see [validate](#validate) below), and will raise an exception if not a valid JSON Table Schema.

```python
from jsontableschema import Schema

# Init schema
schema = Schema('path.json')

# Cast a row
schema.cast_row(['12345', 'a string', 'another field'])
```

Methods available to `Schema` instances:

- `descriptor` - return schema descriptor
- `fields` - an array of the schema's Field instances
- `headers` - an array of the schema headers
- `primary_key` - the primary key field for the schema as an array
- `foreignKey` - the foreign key property for the schema as an array
- `get_field(name)` - return the field object for given name
- `has_field(name)` - return a bool if the field exists in the schema
- `cast_row(row, no_fail_fast=False)` - return row cast against schema
- `save(target)` - save schema to filesystem

Where the option `no_fail_fast` is given, it will collect all errors it encouters and an exceptions.MultipleInvalid will be raised (if there are errors).

### Field

```python
from jsontableschemal import Field

# Init field
field = Field({'type': 'number'})

# Cast a value
field.cast_value('12345') # -> 12345
```

Data values can be cast to native Python objects with a Field instance. Type instances can be initialized with [field descriptors](http://dataprotocols.org/json-table-schema/#field-descriptors). This allows formats and constraints to be defined.

Casting a value will check the value is of the expected type, is in the correct format, and complies with any constraints imposed by a schema. E.g. a date value (in ISO 8601 format) can be cast with a DateType instance. Values that can't be cast will raise an `InvalidCastError` exception.

Casting a value that doesn't meet the constraints will raise a `ConstraintError` exception.

### validate

Given a schema as JSON file, url to JSON file, or a Python dict, `validate` returns `True` for a valid JSON Table Schema, or raises an exception, `SchemaValidationError`. It validates only **schema**, not data against schema!

```python
import io
import json

from jsontableschema import validate

with io.open('schema_to_validate.json') as stream:
descriptor = json.load(stream)

try:
jsontableschema.validate(descriptor)
except jsontableschema.exceptions.SchemaValidationError as exception:
# handle error

```

It may be useful to report multiple errors when validating a schema. This can be done with `no_fail_fast` flag set to True.

```python
try:
jsontableschema.validate(descriptor, no_fail_fast=True)
except jsontableschema.exceptions.MultipleInvalid as exception:
for error in exception.errors:
# handle error
```

### infer

Given headers and data, `infer` will return a JSON Table Schema as a Python dict based on the data values. Given the data file, data_to_infer.csv:

```
id,age,name
1,39,Paul
2,23,Jimmy
3,36,Jane
4,28,Judy
```

Call `infer` with headers and values from the datafile:

```python
import io
import csv

from jsontableschema import infer

filepath = 'data_to_infer.csv'
with io.open(filepath) as stream:
headers = stream.readline().rstrip('\n').split(',')
values = csv.reader(stream)

schema = infer(headers, values)
```

`schema` is now a schema dict:

```python
{u'fields': [
{
u'description': u'',
u'format': u'default',
u'name': u'id',
u'title': u'',
u'type': u'integer'
},
{
u'description': u'',
u'format': u'default',
u'name': u'age',
u'title': u'',
u'type': u'integer'
},
{
u'description': u'',
u'format': u'default',
u'name': u'name',
u'title': u'',
u'type': u'string'
}]
}
```

The number of rows used by `infer` can be limited with the `row_limit` argument.

### CLI

> It's a provisional API excluded from SemVer. If you use it as a part of other program please pin concrete `goodtables` version to your requirements file.

JSON Table Schema features a CLI called `jsontableschema`. This CLI exposes the `infer` and `validate` functions for command line use.

Example of `validate` usage:

```
$ jsontableschema validate path/to-schema.json
```

Example of `infer` usage:

```
$ jsontableschema infer path/to/data.csv
```

The response is a schema as JSON. The optional argument `--encoding` allows a character encoding to be specified for the data file. The default is utf-8.

### Storage

The library includes interface declaration to implement tabular `Storage`:

![Storage](data/storage.png)

An implementor should follow `jsontableschema.Storage` interface to write his
own storage backend. This backend could be used with `Table` class. See `plugins`
system below to know how to integrate custom storage plugin.

### plugins

JSON Table Schema has a plugin system. Any package with the name like `jsontableschema_<name>` could be imported as:

```python
from jsontableschema.plugins import <name>
```

If a plugin is not installed `ImportError` will be raised with a message describing how to install the plugin.

A list of officially supported plugins:
- BigQuery Storage - https://github.com/frictionlessdata/jsontableschema-bigquery-py
- Pandas Storage - https://github.com/frictionlessdata/jsontableschema-pandas-py
- SQL Storage - https://github.com/frictionlessdata/jsontableschema-sql-py

## API Reference

### Snapshot

```
Table(source, schema=None, post_cast=None, backend=None, **options)
stream -> tabulator.Stream
schema -> Schema
name -> str
iter(keyed/extended=False) -> (generator) (keyed/extended)row[]
read(keyed/extended=False, limit=None) -> (keyed/extended)row[]
save(target, backend=None, **options)
Schema(descriptor)
descriptor -> dict
fields -> Field[]
headers -> str[]
primary_key -> str[]
foreign_keys -> str[]
get_field(name) -> Field
has_field(name) -> bool
cast_row(row, no_fail_fast=False) -> row
save(target)
Field(descriptor)
descriptor -> dict
name -> str
type -> str
format -> str
constraints -> dict
cast_value(value, skip_constraints=False) -> value
test_value(value, skip_constraints=False, constraint=None) -> bool
validate(descriptor, no_fail_fast=False) -> bool
infer(headers, values) -> descriptor
exceptions
~cli
---
Storage(**options)
buckets -> str[]
create(bucket, descriptor, force=False)
delete(bucket=None, ignore=False)
describe(bucket, descriptor=None) -> descriptor
iter(bucket) -> (generator) row[]
read(bucket) -> row[]
write(bucket, rows)
plugins
```

### Detailed

- [Docstrings](https://github.com/frictionlessdata/jsontableschema-py/tree/master/jsontableschema)
- [Changelog](https://github.com/frictionlessdata/jsontableschema-py/commits/master)

## Contributing

Please read the contribution guideline:

[How to Contribute](CONTRIBUTING.md)

Thanks!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

jsontableschema-0.10.1.tar.gz (32.5 kB view details)

Uploaded Source

Built Distribution

jsontableschema-0.10.1-py2.py3-none-any.whl (48.6 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file jsontableschema-0.10.1.tar.gz.

File metadata

File hashes

Hashes for jsontableschema-0.10.1.tar.gz
Algorithm Hash digest
SHA256 71f35e5855c5284e18019f7b9db255b44c1da2341bc5dbe724e6d13f1bae4be7
MD5 e25bf36ade5871fbdeddc3e281e17b15
BLAKE2b-256 8ca7b697e0679a092add8f388bddc7ebee60a537707a272dbd7628048c24d156

See more details on using hashes here.

File details

Details for the file jsontableschema-0.10.1-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for jsontableschema-0.10.1-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 0cadcaf4f5b9196f5862e5528a20c85cf041fd29ab3d48c92fab8c4cee8498ab
MD5 2cd87f3fca607cdedab3463eec75d2f2
BLAKE2b-256 8ac369b70b67645a83c2723611ad2d744d2843f61c4ef73e71244c620b19b4f4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page