Skip to main content

data analysis and statictic tools

Project description

jtatistic is a Python module for solving problems relevant to statistic topics

BASIC USAGE

# ------------------- Code ------------------- #
data = [ random.randint(1, 10)  for i in range(10)]
dataset = Dataset(data)
print(data)
print(dataset)
print(f'{dataset.variance=},\n{dataset.deviation=},\n{dataset.coefficient=}')

# ------------------- Output ------------------- #
[5, 9, 5, 6, 10, 4, 6, 10, 2, 8]
<Dataset [N=10 Mean=6.500 Median=6.000 Mode=False]>
dataset.variance=7.166666666666667,
dataset.deviation=2.6770630673681683,
dataset.coefficient=0.41185585651817974

COEFFICIENT

# ------------------- Code ------------------- #
l = [1,2,3,4,5,6]
v = [i*2 for i in l]
dl = Dataset(l)
dv = Dataset(v)
print(f'{dl.variance=} {dv.variance=}')
print(f'{dl.coefficient=} {dv.coefficient=}')

# ------------------- Output ------------------- #
dl.variance=3.5 dv.variance=14.0
dl.coefficient=0.5345224838248488 dv.coefficient=0.5345224838248488

SKEW

# ------------------- Code ------------------- #
data = [1,2,2,2,3,3,3,4,4,5]
dataset = Dataset(data)
print(f'{dataset.mean=},\n{dataset.median=}')
print(f'{dataset.is_right_skew()=},\n{dataset.is_left_skew()=},\n{dataset.is_skew()=}')

# ------------------- Output ------------------- #
dataset.mean=2.9,
dataset.median=3.0
dataset.is_right_skew()=False,
dataset.is_left_skew()=True,
dataset.is_skew()=True

COVVARIANCE

# ------------------- Code ------------------- #
l = [2,4,6,8,10]
v = [1,3,5,7,9]
v = [9,7,5,3,1]
v = [9,1,5,3,7]
dl = Dataset(l)
dv = Dataset(v)

print(f'{covariance(dl, dv)=}')
print(f'{correlation(dl, dv)=}')
print(dl/dv, dl//dv)

# ------------------- Output ------------------- #
covariance(dl, dv)=-1.8
correlation(dl, dv)=-0.060000000000000005
-1.8 -0.060000000000000005

NORMAL DISTRIBUTION

# ------------------- Code ------------------- #
data =   [1,2,2,3,3,3,4,4,4,4,5,5,5,6,6,7]
dataset = Dataset(data)
print(f'{dataset.mean=} {dataset.median=} {dataset.mode}')
print(f'{dataset.is_normal_distribution()=}')

# ------------------- Output ------------------- #
dataset.mean=4.0 dataset.median=4.0 4
dataset.is_normal_distribution()=True

STANDART NORMAL DISTRIBUTION

# ------------------- Code ------------------- #
l = [1,2,2,3,3,3,4,4,5]
dataset = Dataset(l)
standart_dataset = dataset.get_standart()

print(f'{dataset.args=}\n{standart_dataset.args=}')
print(f'{dataset.mean=} {standart_dataset.mean=}')
print(f'{dataset.median=} {standart_dataset.median=}')
print(f'{dataset.mode=} {standart_dataset.mode=}')
print(f'{dataset.variance=} {standart_dataset.variance=}')

# ------------------- Output ------------------- #
dataset.args=[1, 2, 2, 3, 3, 3, 4, 4, 5]
standart_dataset.args=[-1.6329931618554523, -0.8164965809277261, -0.8164965809277261, 0.0, 0.0, 0.0, 0.8164965809277261, 0.8164965809277261, 1.6329931618554523]
dataset.mean=3.0 standart_dataset.mean=0.0
dataset.median=3 standart_dataset.median=0.0
dataset.mode=3 standart_dataset.mode=0.0
dataset.variance=1.5 standart_dataset.variance=1.0

PROVING CETNRAL LIMIT THEOREM WITH JTATISTIC

# ------------------- Code ------------------- #
student_heights = [random.randint(150, 195) for i in range(10000)]
pop = Dataset(student_heights)
sample_distribution = [Dataset(random.sample(pop.args, 100)) for i in range(10000)]
sd_dataset = SampleSet(sample_distribution)
print(sd_dataset.mean, pop.mean, '\n', sd_dataset.variance, pop.variance)
print(sd_dataset, sd_dataset.standart_error)

# ------------------- Output ------------------- #
172.53898100000046 172.5413
1.783505122151223 178.9789922092179
<SampleSet [N=10000 Mean=172.53898 Standart Error=1.15563]> 1.1556294217595244

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

jtatisctic-0.0.2.tar.gz (3.9 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

jtatisctic-0.0.2-py3-none-any.whl (3.8 kB view details)

Uploaded Python 3

File details

Details for the file jtatisctic-0.0.2.tar.gz.

File metadata

  • Download URL: jtatisctic-0.0.2.tar.gz
  • Upload date:
  • Size: 3.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.9

File hashes

Hashes for jtatisctic-0.0.2.tar.gz
Algorithm Hash digest
SHA256 5bdb7b1c99a7ce5bb1e88af40ba8724f527accde2205683dc3cd642081d17e41
MD5 6378447fd099955a18cd3c7b306c48fa
BLAKE2b-256 de0c35e8068de15ffcffe94c11c7c823a7e13303a7940aa4acbda34287a47a5b

See more details on using hashes here.

File details

Details for the file jtatisctic-0.0.2-py3-none-any.whl.

File metadata

  • Download URL: jtatisctic-0.0.2-py3-none-any.whl
  • Upload date:
  • Size: 3.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.9

File hashes

Hashes for jtatisctic-0.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 5e2aab511d24e806e9c77642408324ed5e6f17676d6997ff3cdc0fd66765b598
MD5 1ac952138a951c5afbcc7b547a980348
BLAKE2b-256 b706b97237ac17a6d2e6c6203f31369acd2b382f77c542e5c04c8900f70a043a

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page