A tool to dynamically create protobuf message classes from JSON Typedef
Project description
JTD To Proto
This library holds utilities for converting JSON Typedef to Protobuf.
Why?
The protobuf
langauge is a powerful tool for defining language-agnostic, composable datastructures. JSON Typedef
(JTD
) is also a powerful tool to accomplish the same task. Both have advantages and disadvantages that make each fit better for certain use cases. For example:
Protobuf
:- Advantages
- Compact serialization
- Auto-generated
grpc
client and service libraries - Client libraries can be used from different programming languages
- Disadvantages
- Learning curve to understand the full ecosystem
- Not a familiar tool outside of service engineering
- Static compilation step required to use in code
- Advantages
JTD
:- Advantages
- Can be learned in 5 minutes
- Can be written inline in the programming language of choice (e.g. as a
dict
inpython
)
- Disadvantages
- No optimized serialization beyond
json
- No automated service implementations
- Static
jtd-codegen
step needed to generate native structures
- No optimized serialization beyond
- Advantages
This project aims to bring them together so that a given project can take advantage of the best of both:
- Define your structures in
JTD
for simplicity - Dynamically create
google.protobuf.Descriptor
objects to allow forprotobuf
serialization and deserialization - Reverse render a
.proto
file from the generatedDescriptor
so that stubs can be generated in other languages - No static compiliation needed!
Usage
The usage of this library can be best understood with a simple example:
import jtd_to_proto
# Declare the Foo protobuf message class
Foo = jtd_to_proto.descriptor_to_message_class(
jtd_to_proto.jtd_to_proto(
name="Foo",
package="foobar",
jtd_def={
"properties": {
# Bool field
"foo": {
"type": "boolean",
},
# Array of nested enum values
"bar": {
"elements": {
"enum": ["EXAM", "JOKE_SETTING"],
}
}
}
},
)
)
# Declare an object that references Foo as the type for a field
Bar = jtd_to_proto.descriptor_to_message_class(
jtd_to_proto.jtd_to_proto(
name="Bar",
package="foobar",
jtd_def={
"properties": {
"baz": {
"type": Foo.DESCRIPTOR,
},
},
},
),
)
def write_protos(proto_dir: str):
"""Write out the .proto files for Foo and Bar to the given directory"""
Foo.write_proto_file(proto_dir)
Bar.write_proto_file(proto_dir)
Similar Projects
There are a number of similar projects in this space that offer slightly diferent value:
jtd-codegen
: This project focuses on statically generating language-native code (includingpython
) to represent the JTD schema.py-json-to-proto
: This project aims to deduce a schema from an instance of ajson
object.pure-protobuf
: This project has a very similar aim tojtd-to-proto
, but it skips the intermediatedescriptor
representation and thus is not able to produce nativemessage.Message
classes.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
Built Distributions
Hashes for jtd_to_proto-0.10.1-py310-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 49859e1de2cc6d5d32d8ee08350a5502ae74c15c1848d80c7480b4ca4cd5c1dd |
|
MD5 | 78cc159981c75705a9221a6905230323 |
|
BLAKE2b-256 | d124c9e97d134cba5bb399dcbb41c4431c882a3d6e6afe680740e317fc17ca81 |
Hashes for jtd_to_proto-0.10.1-py39-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 62f7b23f7d04992141b0aeb58fa2a0a2a7d870306222d43a545afb4dfc43fff9 |
|
MD5 | 8cb89bfe8ba74ec31684ff93b18b21be |
|
BLAKE2b-256 | 8560ca2d397ad9eb0ef82306d16b60e7f8376efd79b917152fc07bf2015931cc |
Hashes for jtd_to_proto-0.10.1-py38-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | b9252dad82eb144f123f71e148c7fd684472e7af29976c6f319f697d771a68f9 |
|
MD5 | b720d6cb22c14c360675bf2650522ebf |
|
BLAKE2b-256 | dd5710f377644e22ec18449b4590ed2bc3b63a04c4378e030582ddb9e21387a9 |
Hashes for jtd_to_proto-0.10.1-py37-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 83851dd7d9743fe40d36cda96401f951301ffc40c3f4771caad071953228b33e |
|
MD5 | 31b6304b787707c688aa612db6e62fbd |
|
BLAKE2b-256 | c616decdafc5c104f5e091bc346fea475248994002018890dbf31bc641098411 |