A tool to dynamically create protobuf message classes from JSON Typedef
Project description
JTD To Proto
This library holds utilities for converting JSON Typedef to Protobuf.
Why?
The protobuf
langauge is a powerful tool for defining language-agnostic, composable datastructures. JSON Typedef
(JTD
) is also a powerful tool to accomplish the same task. Both have advantages and disadvantages that make each fit better for certain use cases. For example:
Protobuf
:- Advantages
- Compact serialization
- Auto-generated
grpc
client and service libraries - Client libraries can be used from different programming languages
- Disadvantages
- Learning curve to understand the full ecosystem
- Not a familiar tool outside of service engineering
- Static compilation step required to use in code
- Advantages
JTD
:- Advantages
- Can be learned in 5 minutes
- Can be written inline in the programming language of choice (e.g. as a
dict
inpython
)
- Disadvantages
- No optimized serialization beyond
json
- No automated service implementations
- Static
jtd-codegen
step needed to generate native structures
- No optimized serialization beyond
- Advantages
This project aims to bring them together so that a given project can take advantage of the best of both:
- Define your structures in
JTD
for simplicity - Dynamically create
google.protobuf.Descriptor
objects to allow forprotobuf
serialization and deserialization - Reverse render a
.proto
file from the generatedDescriptor
so that stubs can be generated in other languages - No static compiliation needed!
Usage
The usage of this library can be best understood with a simple example:
import jtd_to_proto
# Declare the Foo protobuf message class
Foo = jtd_to_proto.descriptor_to_message_class(
jtd_to_proto.jtd_to_proto(
name="Foo",
package="foobar",
jtd_def={
"properties": {
# Bool field
"foo": {
"type": "boolean",
},
# Array of nested enum values
"bar": {
"elements": {
"enum": ["EXAM", "JOKE_SETTING"],
}
}
}
},
)
)
# Declare an object that references Foo as the type for a field
Bar = jtd_to_proto.descriptor_to_message_class(
jtd_to_proto.jtd_to_proto(
name="Bar",
package="foobar",
jtd_def={
"properties": {
"baz": {
"type": Foo.DESCRIPTOR,
},
},
},
),
)
def write_protos(proto_dir: str):
"""Write out the .proto files for Foo and Bar to the given directory"""
Foo.write_proto_file(proto_dir)
Bar.write_proto_file(proto_dir)
Similar Projects
There are a number of similar projects in this space that offer slightly diferent value:
jtd-codegen
: This project focuses on statically generating language-native code (includingpython
) to represent the JTD schema.py-json-to-proto
: This project aims to deduce a schema from an instance of ajson
object.pure-protobuf
: This project has a very similar aim tojtd-to-proto
, but it skips the intermediatedescriptor
representation and thus is not able to produce nativemessage.Message
classes.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
Built Distributions
Hashes for jtd_to_proto-0.11.1-py310-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6ba06f03649ce2696a9a8e681d1d861aac85649d953f3c3bccd9a1769474ea96 |
|
MD5 | e4207116b69be021042e9ce4f97cee00 |
|
BLAKE2b-256 | 30f644fc918e45b3fb7462629f75a834b975c01f934ff248c30a08846fef4127 |
Hashes for jtd_to_proto-0.11.1-py39-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | cf2bf36b15a5f8028ce4dd8d18407e4f9432156bb9c71d4fe4681948918a47cc |
|
MD5 | e33cc56be7f6ba36f92007198f275437 |
|
BLAKE2b-256 | 740b52e74578f80b3696cf85a47dac9132bdda072332bdf7cf46ceb8d28ebac8 |
Hashes for jtd_to_proto-0.11.1-py38-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7982cf8f40b2acb54735da508164e88d5ebdb07100bef1fb2ffaf7537cbc3b7a |
|
MD5 | a1e6c98fcc79cc5ac3b613845d3d5f30 |
|
BLAKE2b-256 | d1733248e1bf295d7ff09adfa6f75f41189ee230837b42442d509e8b22b401c1 |
Hashes for jtd_to_proto-0.11.1-py37-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6890924afc21e125d4560be3704345f81d2bae1ef8314200ccea7c060d60cf6b |
|
MD5 | 089d5ec961b6656c1b3954c1275de948 |
|
BLAKE2b-256 | c533e7f8c5575fdee8640ae613f0fac716edc252c1cf31083dcb8698fe10c486 |