A tool to dynamically create protobuf message classes from JSON Typedef
Project description
JTD To Proto
This library holds utilities for converting JSON Typedef to Protobuf.
Why?
The protobuf
langauge is a powerful tool for defining language-agnostic, composable datastructures. JSON Typedef
(JTD
) is also a powerful tool to accomplish the same task. Both have advantages and disadvantages that make each fit better for certain use cases. For example:
Protobuf
:- Advantages
- Compact serialization
- Auto-generated
grpc
client and service libraries - Client libraries can be used from different programming languages
- Disadvantages
- Learning curve to understand the full ecosystem
- Not a familiar tool outside of service engineering
- Static compilation step required to use in code
- Advantages
JTD
:- Advantages
- Can be learned in 5 minutes
- Can be written inline in the programming language of choice (e.g. as a
dict
inpython
)
- Disadvantages
- No optimized serialization beyond
json
- No automated service implementations
- Static
jtd-codegen
step needed to generate native structures
- No optimized serialization beyond
- Advantages
This project aims to bring them together so that a given project can take advantage of the best of both:
- Define your structures in
JTD
for simplicity - Dynamically create
google.protobuf.Descriptor
objects to allow forprotobuf
serialization and deserialization - Reverse render a
.proto
file from the generatedDescriptor
so that stubs can be generated in other languages - No static compiliation needed!
Usage
The usage of this library can be best understood with a simple example:
import jtd_to_proto
# Declare the Foo protobuf message class
Foo = jtd_to_proto.descriptor_to_message_class(
jtd_to_proto.jtd_to_proto(
name="Foo",
package="foobar",
jtd_def={
"properties": {
# Bool field
"foo": {
"type": "boolean",
},
# Array of nested enum values
"bar": {
"elements": {
"enum": ["EXAM", "JOKE_SETTING"],
}
}
}
},
)
)
# Declare an object that references Foo as the type for a field
Bar = jtd_to_proto.descriptor_to_message_class(
jtd_to_proto.jtd_to_proto(
name="Bar",
package="foobar",
jtd_def={
"properties": {
"baz": {
"type": Foo.DESCRIPTOR,
},
},
},
),
)
def write_protos(proto_dir: str):
"""Write out the .proto files for Foo and Bar to the given directory"""
Foo.write_proto_file(proto_dir)
Bar.write_proto_file(proto_dir)
Similar Projects
There are a number of similar projects in this space that offer slightly diferent value:
jtd-codegen
: This project focuses on statically generating language-native code (includingpython
) to represent the JTD schema.py-json-to-proto
: This project aims to deduce a schema from an instance of ajson
object.pure-protobuf
: This project has a very similar aim tojtd-to-proto
, but it skips the intermediatedescriptor
representation and thus is not able to produce nativemessage.Message
classes.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
Built Distributions
Hashes for jtd_to_proto-0.12.0-py310-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | e85d7ba8e218056c945e03c31678cb5d482248d54640b47e2a7f5894241ba2ed |
|
MD5 | 5b7e187014355523867891405c62d60f |
|
BLAKE2b-256 | 2ae17fd6c479c69df31fe9d3599110530005cb270cd5b182e588500810145937 |
Hashes for jtd_to_proto-0.12.0-py39-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5fce0a802265764e81dd3d68a7ef3cf5c4a900e211409bcfe0b36465fed55465 |
|
MD5 | f1175c1daa4e7ca8bdb57cbb8105d99c |
|
BLAKE2b-256 | 120213534302427f16121118055b2f9cc38e7ac48bbb3192ddfcf40cfe456c11 |
Hashes for jtd_to_proto-0.12.0-py38-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 00dccbf4ebe549cdcc8caa34c0bad7ff99dd8836cb138e1d58e3699918fcb7b4 |
|
MD5 | 952f32b4f5df5f8011115bcacc6c8009 |
|
BLAKE2b-256 | 9354ac3d90adf81af64b5f0fd00e571f68188bca620ebeddeccc2cb9ed33d57a |
Hashes for jtd_to_proto-0.12.0-py37-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | b19e24a6b863682add3ee3da463a2a9b242bc562ab5d6602649dda218b3a8635 |
|
MD5 | 4531d0693b484b330c479d660c7e2162 |
|
BLAKE2b-256 | 39ee59bd7527c3288a3d36f0e3a3a243e20b1cb93b6d0baa3b1cb1bf17ab2bbb |