A tool to dynamically create protobuf message classes from JSON Typedef
Project description
JTD To Proto
This library holds utilities for converting JSON Typedef to Protobuf.
Why?
The protobuf
langauge is a powerful tool for defining language-agnostic, composable datastructures. JSON Typedef
(JTD
) is also a powerful tool to accomplish the same task. Both have advantages and disadvantages that make each fit better for certain use cases. For example:
Protobuf
:- Advantages
- Compact serialization
- Auto-generated
grpc
client and service libraries - Client libraries can be used from different programming languages
- Disadvantages
- Learning curve to understand the full ecosystem
- Not a familiar tool outside of service engineering
- Static compilation step required to use in code
- Advantages
JTD
:- Advantages
- Can be learned in 5 minutes
- Can be written inline in the programming language of choice (e.g. as a
dict
inpython
)
- Disadvantages
- No optimized serialization beyond
json
- No automated service implementations
- Static
jtd-codegen
step needed to generate native structures
- No optimized serialization beyond
- Advantages
This project aims to bring them together so that a given project can take advantage of the best of both:
- Define your structures in
JTD
for simplicity - Dynamically create
google.protobuf.Descriptor
objects to allow forprotobuf
serialization and deserialization - Reverse render a
.proto
file from the generatedDescriptor
so that stubs can be generated in other languages - No static compiliation needed!
Usage
The usage of this library can be best understood with a simple example:
import jtd_to_proto
# Declare the Foo protobuf message class
Foo = jtd_to_proto.descriptor_to_message_class(
jtd_to_proto.jtd_to_proto(
name="Foo",
package="foobar",
jtd_def={
"properties": {
# Bool field
"foo": {
"type": "boolean",
},
# Array of nested enum values
"bar": {
"elements": {
"enum": ["EXAM", "JOKE_SETTING"],
}
}
}
},
)
)
# Declare an object that references Foo as the type for a field
Bar = jtd_to_proto.descriptor_to_message_class(
jtd_to_proto.jtd_to_proto(
name="Bar",
package="foobar",
jtd_def={
"properties": {
"baz": {
"type": Foo.DESCRIPTOR,
},
},
},
),
)
def write_protos(proto_dir: str):
"""Write out the .proto files for Foo and Bar to the given directory"""
Foo.write_proto_file(proto_dir)
Bar.write_proto_file(proto_dir)
Similar Projects
There are a number of similar projects in this space that offer slightly diferent value:
jtd-codegen
: This project focuses on statically generating language-native code (includingpython
) to represent the JTD schema.py-json-to-proto
: This project aims to deduce a schema from an instance of ajson
object.pure-protobuf
: This project has a very similar aim tojtd-to-proto
, but it skips the intermediatedescriptor
representation and thus is not able to produce nativemessage.Message
classes.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
Built Distributions
Hashes for jtd_to_proto-0.12.1-py310-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | d6d3ea301bf0b8af23d492583a30c88e226798f190c7b264ee167261a6134340 |
|
MD5 | c110d93960b142654d8f20cb12be89b4 |
|
BLAKE2b-256 | 8ea458e1829618aedb2443e07a7620bf5d96ccb7bcc87b34ce4df5aa1b11f680 |
Hashes for jtd_to_proto-0.12.1-py39-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8931740f74e25a33503edca8fb30cadf9c868a9a91c39529b4316dad05cd3596 |
|
MD5 | 69198f3e77c4c4fdbf3418c40ed10939 |
|
BLAKE2b-256 | 10d0c9ba64e05e3aee8df9ba1ba9d081d976b643f0430ef54ead85a43906caa3 |
Hashes for jtd_to_proto-0.12.1-py38-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2298329866bd2cdbeda3f0af68743b62fea30cbd6bc142a5c2363bb546dac6de |
|
MD5 | 24c540e0187e339c34cd3d5385115bcd |
|
BLAKE2b-256 | c86593519bb37d4a0dc782398fda42d2a80ae520ad5152d4c819ef14e4e170cf |
Hashes for jtd_to_proto-0.12.1-py37-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 89264687fabe91cada6d23827a128111f9816563e389cd77c9adba934f340f3f |
|
MD5 | 6eedea71e440386bf7dccc4efc2f03a8 |
|
BLAKE2b-256 | ac300852b0686f9a7bfcf1a773b9968692f18e976e0f92a67dce90b3776fb9a3 |