A tool to dynamically create protobuf message classes from JSON Typedef
Project description
JTD To Proto
This library holds utilities for converting JSON Typedef to Protobuf.
Why?
The protobuf
langauge is a powerful tool for defining language-agnostic, composable datastructures. JSON Typedef
(JTD
) is also a powerful tool to accomplish the same task. Both have advantages and disadvantages that make each fit better for certain use cases. For example:
Protobuf
:- Advantages
- Compact serialization
- Auto-generated
grpc
client and service libraries - Client libraries can be used from different programming languages
- Disadvantages
- Learning curve to understand the full ecosystem
- Not a familiar tool outside of service engineering
- Static compilation step required to use in code
- Advantages
JTD
:- Advantages
- Can be learned in 5 minutes
- Can be written inline in the programming language of choice (e.g. as a
dict
inpython
)
- Disadvantages
- No optimized serialization beyond
json
- No automated service implementations
- Static
jtd-codegen
step needed to generate native structures
- No optimized serialization beyond
- Advantages
This project aims to bring them together so that a given project can take advantage of the best of both:
- Define your structures in
JTD
for simplicity - Dynamically create
google.protobuf.Descriptor
objects to allow forprotobuf
serialization and deserialization - Reverse render a
.proto
file from the generatedDescriptor
so that stubs can be generated in other languages - No static compiliation needed!
Usage
The usage of this library can be best understood with a simple example:
import jtd_to_proto
# Declare the Foo protobuf message class
Foo = jtd_to_proto.descriptor_to_message_class(
jtd_to_proto.jtd_to_proto(
name="Foo",
package="foobar",
jtd_def={
"properties": {
# Bool field
"foo": {
"type": "boolean",
},
# Array of nested enum values
"bar": {
"elements": {
"enum": ["EXAM", "JOKE_SETTING"],
}
}
}
},
)
)
# Declare an object that references Foo as the type for a field
Bar = jtd_to_proto.descriptor_to_message_class(
jtd_to_proto.jtd_to_proto(
name="Bar",
package="foobar",
jtd_def={
"properties": {
"baz": {
"type": Foo.DESCRIPTOR,
},
},
},
),
)
def write_protos(proto_dir: str):
"""Write out the .proto files for Foo and Bar to the given directory"""
Foo.write_proto_file(proto_dir)
Bar.write_proto_file(proto_dir)
Similar Projects
There are a number of similar projects in this space that offer slightly diferent value:
jtd-codegen
: This project focuses on statically generating language-native code (includingpython
) to represent the JTD schema.py-json-to-proto
: This project aims to deduce a schema from an instance of ajson
object.pure-protobuf
: This project has a very similar aim tojtd-to-proto
, but it skips the intermediatedescriptor
representation and thus is not able to produce nativemessage.Message
classes.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
Built Distributions
Hashes for jtd_to_proto-0.3.0-py310-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 67cea2ec909b278f4fb576104b5ca534cb7c3f9a028135551fa49e8d877968e7 |
|
MD5 | c6b6b0125ea5776326def56c0aeffa62 |
|
BLAKE2b-256 | 145043f2b1d289fd2e074f9381a329f36d21780c7a79f28e9b64c9e38e547467 |
Hashes for jtd_to_proto-0.3.0-py39-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | d44dd6b6fba96db2e32e20dd135d8060dfd41235414ff457738505df1eb2564d |
|
MD5 | 655c5c70ffddce49dc2a5fe9319ca23c |
|
BLAKE2b-256 | 381261eb5be845176fe4452ecc4682977def7b3f427e5b4c0f23f76c885e750d |
Hashes for jtd_to_proto-0.3.0-py38-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4a91dd62c7d843d671d42237f0b48eb966281e3f275f8c9332dd99df8934bd89 |
|
MD5 | 1a5e43494eee85ce9a5d2ce0d99da72d |
|
BLAKE2b-256 | e07f4babba3dc652e7dad3ac48052fecb9db7deb41c8f4119c9088381399f523 |
Hashes for jtd_to_proto-0.3.0-py37-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | fa2ee97b4453e50abf6a57a5f553602bde86fd3edf5bf76e808a039dfce55504 |
|
MD5 | 16e84942e216abf37ecc0b459feda542 |
|
BLAKE2b-256 | 2153def0ae362cdfb5c599d02ce69ea880d7e5966bc4650a6f856c2a395a300a |