A tool to dynamically create protobuf message classes from JSON Typedef
Project description
JTD To Proto
This library holds utilities for converting JSON Typedef to Protobuf.
Why?
The protobuf
langauge is a powerful tool for defining language-agnostic, composable datastructures. JSON Typedef
(JTD
) is also a powerful tool to accomplish the same task. Both have advantages and disadvantages that make each fit better for certain use cases. For example:
Protobuf
:- Advantages
- Compact serialization
- Auto-generated
grpc
client and service libraries - Client libraries can be used from different programming languages
- Disadvantages
- Learning curve to understand the full ecosystem
- Not a familiar tool outside of service engineering
- Static compilation step required to use in code
- Advantages
JTD
:- Advantages
- Can be learned in 5 minutes
- Can be written inline in the programming language of choice (e.g. as a
dict
inpython
)
- Disadvantages
- No optimized serialization beyond
json
- No automated service implementations
- Static
jtd-codegen
step needed to generate native structures
- No optimized serialization beyond
- Advantages
This project aims to bring them together so that a given project can take advantage of the best of both:
- Define your structures in
JTD
for simplicity - Dynamically create
google.protobuf.Descriptor
objects to allow forprotobuf
serialization and deserialization - Reverse render a
.proto
file from the generatedDescriptor
so that stubs can be generated in other languages - No static compiliation needed!
Usage
The usage of this library can be best understood with a simple example:
import jtd_to_proto
# Declare the Foo protobuf message class
Foo = jtd_to_proto.descriptor_to_message_class(
jtd_to_proto.jtd_to_proto(
name="Foo",
package="foobar",
jtd_def={
"properties": {
# Bool field
"foo": {
"type": "boolean",
},
# Array of nested enum values
"bar": {
"elements": {
"enum": ["EXAM", "JOKE_SETTING"],
}
}
}
},
)
)
# Declare an object that references Foo as the type for a field
Bar = jtd_to_proto.descriptor_to_message_class(
jtd_to_proto.jtd_to_proto(
name="Bar",
package="foobar",
jtd_def={
"properties": {
"baz": {
"type": Foo.DESCRIPTOR,
},
},
},
),
)
def write_protos(proto_dir: str):
"""Write out the .proto files for Foo and Bar to the given directory"""
Foo.write_proto_file(proto_dir)
Bar.write_proto_file(proto_dir)
Similar Projects
There are a number of similar projects in this space that offer slightly diferent value:
jtd-codegen
: This project focuses on statically generating language-native code (includingpython
) to represent the JTD schema.py-json-to-proto
: This project aims to deduce a schema from an instance of ajson
object.pure-protobuf
: This project has a very similar aim tojtd-to-proto
, but it skips the intermediatedescriptor
representation and thus is not able to produce nativemessage.Message
classes.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
Built Distributions
Hashes for jtd_to_proto-0.6.1-py310-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | fb99fb67551f7d3e58eefec2a32c865ba52ee6e19b998016a587b2d99d92c1c6 |
|
MD5 | d85d5c8ddd609bad429bdd3f45fcf281 |
|
BLAKE2b-256 | 2e65e675b2c99f78dbd274d75ba0f71425f28db8f41b813682a6e701a761eb0d |
Hashes for jtd_to_proto-0.6.1-py39-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | ef94e96f0e29a8ed937ae013e76355625d8178cd6ce3ccad336cc16d72f27378 |
|
MD5 | 5568e2e3af0515772eff4527def09421 |
|
BLAKE2b-256 | a83905f30cc57b0de289cccad09a39e9641db0c922cd1c467cf44375feb6370e |
Hashes for jtd_to_proto-0.6.1-py38-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | b9cea65d20ac120c49075b360158a84118135c7c46a17748d8d4ba4bd6747ec8 |
|
MD5 | 6a6169787e9781cbcd8c51d1fa2e069f |
|
BLAKE2b-256 | 2228b4a8357cf594319c33f068e62bc9714cb5cffffa8176ff7c956da07e17f1 |
Hashes for jtd_to_proto-0.6.1-py37-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4ff4a02cee54f974290040b87c807cff34b255323600e1609e0ef67d0a31a1ac |
|
MD5 | f292ff962d97d602470ccd46c1d8891d |
|
BLAKE2b-256 | 2317dd74ec81956877b69c557b20046aa3f574ab52840d57f4a32ae571c78e4a |