A tool to dynamically create protobuf message classes from JSON Typedef
Project description
JTD To Proto
This library holds utilities for converting JSON Typedef to Protobuf.
Why?
The protobuf
langauge is a powerful tool for defining language-agnostic, composable datastructures. JSON Typedef
(JTD
) is also a powerful tool to accomplish the same task. Both have advantages and disadvantages that make each fit better for certain use cases. For example:
Protobuf
:- Advantages
- Compact serialization
- Auto-generated
grpc
client and service libraries - Client libraries can be used from different programming languages
- Disadvantages
- Learning curve to understand the full ecosystem
- Not a familiar tool outside of service engineering
- Static compilation step required to use in code
- Advantages
JTD
:- Advantages
- Can be learned in 5 minutes
- Can be written inline in the programming language of choice (e.g. as a
dict
inpython
)
- Disadvantages
- No optimized serialization beyond
json
- No automated service implementations
- Static
jtd-codegen
step needed to generate native structures
- No optimized serialization beyond
- Advantages
This project aims to bring them together so that a given project can take advantage of the best of both:
- Define your structures in
JTD
for simplicity - Dynamically create
google.protobuf.Descriptor
objects to allow forprotobuf
serialization and deserialization - Reverse render a
.proto
file from the generatedDescriptor
so that stubs can be generated in other languages - No static compiliation needed!
Usage
The usage of this library can be best understood with a simple example:
import jtd_to_proto
# Declare the Foo protobuf message class
Foo = jtd_to_proto.descriptor_to_message_class(
jtd_to_proto.jtd_to_proto(
name="Foo",
package="foobar",
jtd_def={
"properties": {
# Bool field
"foo": {
"type": "boolean",
},
# Array of nested enum values
"bar": {
"elements": {
"enum": ["EXAM", "JOKE_SETTING"],
}
}
}
},
)
)
# Declare an object that references Foo as the type for a field
Bar = jtd_to_proto.descriptor_to_message_class(
jtd_to_proto.jtd_to_proto(
name="Bar",
package="foobar",
jtd_def={
"properties": {
"baz": {
"type": Foo.DESCRIPTOR,
},
},
},
),
)
def write_protos(proto_dir: str):
"""Write out the .proto files for Foo and Bar to the given directory"""
Foo.write_proto_file(proto_dir)
Bar.write_proto_file(proto_dir)
Similar Projects
There are a number of similar projects in this space that offer slightly diferent value:
jtd-codegen
: This project focuses on statically generating language-native code (includingpython
) to represent the JTD schema.py-json-to-proto
: This project aims to deduce a schema from an instance of ajson
object.pure-protobuf
: This project has a very similar aim tojtd-to-proto
, but it skips the intermediatedescriptor
representation and thus is not able to produce nativemessage.Message
classes.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
Built Distributions
Hashes for jtd_to_proto-0.7.0-py310-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | eb20a21a0797273bf797b799c8a2db8d7ff89aa51c6806e0161d5a99a6cf2c7f |
|
MD5 | bf39aa5b823b1464af699b8160a68ac0 |
|
BLAKE2b-256 | d476d2d15ee6af366a6c08b4067a2e7b19c437cf6623da25de6467c422263669 |
Hashes for jtd_to_proto-0.7.0-py39-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9c0f59d5895a3f03129be12cb59a69f4f2effdc389eba6ad1a016cd00d2a239d |
|
MD5 | bfd6fa0752a3f78ce9302c7f62b44e73 |
|
BLAKE2b-256 | a4d4df3c92afa4ac0c0e18eae2fc117702cbb162be445d8022d4769b63c17762 |
Hashes for jtd_to_proto-0.7.0-py38-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2f537034cff7bfc6c75cef69dd8f03655d7c257ce2e335c78161cb544a9bec0c |
|
MD5 | 0e2131f1659ff17ec33e560ee57d7236 |
|
BLAKE2b-256 | 3e490a4d8ad2c44b906ffb3bc0e586ce87b94e722a1ae2dff803d66c2a57c45d |
Hashes for jtd_to_proto-0.7.0-py37-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 19c8ca91731685961892bf76d58659fbbb5dec08f3d20845d8b175b4dd585813 |
|
MD5 | 1cc369888deb2a0feef0ae8153c08ae1 |
|
BLAKE2b-256 | e90d54a95fa2de388592a2becc84f79056300c9e4ca37361d3767d2a34d7bf9c |