A tool to dynamically create protobuf message classes from JSON Typedef
Project description
JTD To Proto
This library holds utilities for converting JSON Typedef to Protobuf.
Why?
The protobuf
langauge is a powerful tool for defining language-agnostic, composable datastructures. JSON Typedef
(JTD
) is also a powerful tool to accomplish the same task. Both have advantages and disadvantages that make each fit better for certain use cases. For example:
Protobuf
:- Advantages
- Compact serialization
- Auto-generated
grpc
client and service libraries - Client libraries can be used from different programming languages
- Disadvantages
- Learning curve to understand the full ecosystem
- Not a familiar tool outside of service engineering
- Static compilation step required to use in code
- Advantages
JTD
:- Advantages
- Can be learned in 5 minutes
- Can be written inline in the programming language of choice (e.g. as a
dict
inpython
)
- Disadvantages
- No optimized serialization beyond
json
- No automated service implementations
- Static
jtd-codegen
step needed to generate native structures
- No optimized serialization beyond
- Advantages
This project aims to bring them together so that a given project can take advantage of the best of both:
- Define your structures in
JTD
for simplicity - Dynamically create
google.protobuf.Descriptor
objects to allow forprotobuf
serialization and deserialization - Reverse render a
.proto
file from the generatedDescriptor
so that stubs can be generated in other languages - No static compiliation needed!
Usage
The usage of this library can be best understood with a simple example:
import jtd_to_proto
# Declare the Foo protobuf message class
Foo = jtd_to_proto.descriptor_to_message_class(
jtd_to_proto.jtd_to_proto(
name="Foo",
package="foobar",
jtd_def={
"properties": {
# Bool field
"foo": {
"type": "boolean",
},
# Array of nested enum values
"bar": {
"elements": {
"enum": ["EXAM", "JOKE_SETTING"],
}
}
}
},
)
)
# Declare an object that references Foo as the type for a field
Bar = jtd_to_proto.descriptor_to_message_class(
jtd_to_proto.jtd_to_proto(
name="Bar",
package="foobar",
jtd_def={
"properties": {
"baz": {
"type": Foo.DESCRIPTOR,
},
},
},
),
)
def write_protos(proto_dir: str):
"""Write out the .proto files for Foo and Bar to the given directory"""
Foo.write_proto_file(proto_dir)
Bar.write_proto_file(proto_dir)
Similar Projects
There are a number of similar projects in this space that offer slightly diferent value:
jtd-codegen
: This project focuses on statically generating language-native code (includingpython
) to represent the JTD schema.py-json-to-proto
: This project aims to deduce a schema from an instance of ajson
object.pure-protobuf
: This project has a very similar aim tojtd-to-proto
, but it skips the intermediatedescriptor
representation and thus is not able to produce nativemessage.Message
classes.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
Built Distributions
Hashes for jtd_to_proto-0.8.0-py310-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | da41647832a85694f2f55212090c5af0aaefa7dc8b92261adece24c49d8f80ef |
|
MD5 | 584d750cf1fdc4b37a33bb176679e266 |
|
BLAKE2b-256 | 820c294412d194b2de244f15ecf5df30dc6434211df6980db280468e4bc7cb2e |
Hashes for jtd_to_proto-0.8.0-py39-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | aae62e4d18f0fa8ccd77af996889bb38dacd94447c7111686ab1164a73fcb75d |
|
MD5 | 324e0487e0c035b2e9320421f352ea85 |
|
BLAKE2b-256 | c071be0bc1dc3550bd180576787eacade655e3a186436704311313d3d088603e |
Hashes for jtd_to_proto-0.8.0-py38-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 953a7a645cfa4bafa84c25dd31293326f3c5a887fe506ab88565f289d2ab5bea |
|
MD5 | 22472107270aa5cc2c858ea1696c7330 |
|
BLAKE2b-256 | b45c31d7b9f3d859cfc1df85713792479420a81d37c2489556828980907fa0b1 |
Hashes for jtd_to_proto-0.8.0-py37-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5d5484ef45f74b7d0209e4b56fc1dd8ded9673213838cad3f7a7380042b2a8a0 |
|
MD5 | daddcdacf47825533ff9229dc9b3cdb6 |
|
BLAKE2b-256 | fc213846258f986dc45b6ce67bce0634aca25a20db42b68a7e4f741d87ecd89d |