An Easy to install version of the jtnn encoder for generation of latent molecule features.
Project description
jtnnencoder
Pip installable version of the Junction Tree Variational Autoencoder https://arxiv.org/abs/1802.04364. The original, full repository can be found here: https://github.com/wengong-jin/icml18-jtnn
Intended to be used as a simple interface for generating molecular features for molecules based on JTNN latent vectors.
Install
$ pip install jtnnencoder
$ pip install torch
You will also need rdkit:
$ conda install -c rdkit rdkit
Use
from jtnnencoder import JTNNEmbed
smiles = ['CC1(C)[C@H]2C[C@H](C/C=C\CCCC(=O)O)[C@@H](NC(=O)c3csc4ccc(O)cc34)[C@@H]1C2']
jtnn = JTNNEmbed(smiles)
features = jtnn.get_features()
features
is then a numpy ndarray of dimension (n_smiles x n_features).
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
jtnnencoder-0.1.tar.gz
(19.0 MB
view details)
Built Distribution
jtnnencoder-0.1-py3-none-any.whl
(19.0 MB
view details)
File details
Details for the file jtnnencoder-0.1.tar.gz
.
File metadata
- Download URL: jtnnencoder-0.1.tar.gz
- Upload date:
- Size: 19.0 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.6.0 requests/2.24.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.50.2 CPython/3.7.8
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f340b813d11b1189d06f693b1ebb00258a42cc8b475b7cb7587e4aea57eb894c |
|
MD5 | 3caab492c7522ffa11b2f0655b188ec3 |
|
BLAKE2b-256 | a6c43594f729f9c0fb21d3dbda1e2642d67446e8629ae7af550e7eb1f2ab4544 |
Provenance
File details
Details for the file jtnnencoder-0.1-py3-none-any.whl
.
File metadata
- Download URL: jtnnencoder-0.1-py3-none-any.whl
- Upload date:
- Size: 19.0 MB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.6.0 requests/2.24.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.50.2 CPython/3.7.8
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e7f7868a7e58bc8841a3430c35c5314a6b35fce491166b96bd6a549b5aab8654 |
|
MD5 | f7bb9f9005d1ba20b0d01abbba3cb373 |
|
BLAKE2b-256 | 283b1429b80a59eeb0917d17fd0f9fe1fecbaf22a592b7862e8f8eef888f088e |